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Abstract. Reflection coefficients and arrival times, together with seismic velocities, are significantly important for possible
evaluation of reservoir properties in exploration seismology. Reflectivity inversion is one of the robust inverse techniques
used to estimate layer properties by minimising misfit error between seismic data and model. On the other hand, the layer-
stripping method produces subsurface images via a top-down procedure so that a given layer is modelled after all the upper
layers have been inverted. In this paper, we have combined these two methods to develop a new random layer-stripping
scheme which first determines the reflectivity series via a random-search algorithm and then estimates P-wave velocities. The
first step can be viewed as a variant of sparse spiking deconvolution, and the second step is accomplished by considering
empirical relations between density and P-wave velocity. The method has been successfully applied to Marmousi synthetic
data to examine dipping reflectors and velocity gradients, and it has been found to be quite reliable for analysing complex
structures. A comparison with minimum entropy deconvolution showed that our inversion algorithm gives better results in

detecting the amplitudes and arrival times of seismic reflection events.
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Introduction

Reflection coefficients and arrival times of seismic events are
of significant interest in exploration seismology for their
importance in reservoir time-lapse monitoring, AVO analysis,
seismic impedance modelling, etc. Deconvolution of the seismic
traces is a tool for reflectivity estimation, but the results exhibit
a range of accuracy depending on the assumptions made
in different implementations. Algorithms which apply
deconvolution operators to the recorded seismic trace are
sensitive to the phase of the wavelet and to filter length, and
results may vary due to weak parameterisation. On the other hand,
inversion-based solutions provide more reliable results for the
sparse spike deconvolution problem, and can be used to estimate
reflectivity series. Velis (2008), and Hondori et al. (2011) used
inversion algorithms to extract the least number of spikes in a
reflectivity model that could reproduce the seismic trace by
convolution with a known seismic wavelet. Although Velis
(2008) restricted the number of spikes in the reflectivity model
to be known and fixed, Hondori et al. (2011) did not make any
assumption about the number of spikes in the reflectivity series.
They also showed that their method could be used for arbitrary
source signatures including minimum and zero phase wavelets.
This could make a robust scheme to process various kind of
seismic datasets.

In this paper, we exploit the method of Hondori etal. (2011) to
extract reflection coefficients and arrival times of the seismic
events by using a random search algorithm. Adaptive simulated
annealing (ASA) is used as a global optimisation tool to locate the
spikes in the reflectivity series, and linear least-squares inversion
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has been used to estimate the amplitudes of the spikes. The
resulting reflectivity series contains accurate arrival times and
amplitudes from layer boundaries in the geological model. In
order to achieve high-resolution images of the subsurface, we
have used this reflectivity series along with Gardner’s equation
for P-wave velocity and bulk density (Gardner et al., 1974) to
develop amodel of P-wave velocities. For this part of the research
we followed a layer-stripping strategy (Yagle, 1987; Dewangan
and Tsvankin, 2006), in which the layers are modelled in a
top-down procedure. In this layer-stripping scheme, a given
layer is modelled after all the layers above it have been
developed. In our algorithm, however, the reflectivity series
results from a completely random scheme, and for this reason
we call our method random layer stripping. A comparison with
minimum entropy deconvolution (Wiggins, 1978) shows that
our reflectivity model is more accurate and results have higher
reliability. As an example, we demonstrate that our method could
handle the complex Marmousi synthetic dataset. Dipping events,
and lateral and vertical velocity gradients are sufficiently well
identified by the algorithm. We believe that our proposed method
can be one solution to the general seismic inversion problem of
estimating acoustic impedance profiles.

Theory
Developing a reflectivity model

Using a convolutional model of the earth, any synthetic seismic
data can be reproduced by convolving a reflectivity series with a
wavelet. A noise component may be added to the data for a more
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realistic situation. Although the convolution of two signals to
reproduce synthetic seismic data is simple, the reverse procedure
is challenging because of the limited frequency band that is
available. When the seismic record is the only known data in
the deconvolution problem, it is difficult to extract the reflection
coefficients at interfaces. Moreover, the noise component almost
always contaminates data and makes the problem more complex.
From a mathematical point of view, the convolutional model can
be represented as

x(¢) = s(t) * e(t) + n(z), (1)

where x(7) is the recorded trace, s(f) is the seismic source wavelet,
e(?) is the reflectivity series, and n() is the random noise.

Assuming the Goupillaud model of the earth (Goupillaud,
1961), one could derive an equation in matrix form

x=W-e+n, (2)

where x, e, and n are the seismic trace, reflectivity series and
random noise functions, respectively, each consisting of m
samples. W is the m x m matrix of the convolution kernel
whose elements are samples of the seismic wavelet. Equation
3 shows the convolution kernel under the zero-phase wavelet
assumption, which results in a symmetric matrix; if one uses a
minimum-phase wavelet the matrix W will be lower triangular.

X1 wi wy w3 s Wy e n
X2 Wy Wi Wy wz ) n
X3 = w3 Wy Wi %) w3 e + n3 (3)

w3 Wy Wi Wy

L Xm | LWy, -+ w3z Wy wyp L €m | L m |

where w; is the peak sample of the zero-phase wavelet. To
characterise layers adequately, we need to extract the
reflectivity series, which is represented by e in equation 2.
Based on inversion theory, we search for the best model that
satisfies equation 2 within a given tolerance. To achieve the
desired model, adaptive simulated annealing searches the model
parameter space, i.e., arrival time of the spikes, randomly and
locates the reflectivity spikes one by one. After achieving the
optimised set of time lags, the amplitudes of the spikes are
calculated to best fit the seismic trace in the linear least-
squares sense.

Optimisation algorithm

Adaptive simulated annealing (Ingber, 1996) considers a system
in an initial state with energy £ , and then perturbs the system so
that the energy becomes E,. If E, <E, the system is always
allowed to move to the second state, but if £, > E; the system is
allowed to move to new state with probability P:

P =exp (7*%; E‘)), (4)

where T refers to a parameter like physical temperature which is
called the annealing schedule. This statement is known as the
Metropolis criterion (Metropolis et al., 1953). Ingber (1996) used
an annealing schedule

Ty =Ty exp(—ck%), (5)

where T} is the annealing schedule, 7 is a large-enough starting
‘temperature’, k is the time index of annealing, D is the parameter
space dimension, and c is a constant for tuning the algorithm for
various problems.

In order to locate layers randomly, we define an inverse
problem which aims to find the time lags and amplitudes of
spikes in the reflectivity series. Distribution of the seismic
reflections in a recorded trace is quite random and, as a
consequence, we can search for reflection coefficients by using
arandom-search algorithm. For this purpose, we use the residual
‘energy’ of the difference between the recorded seismic data and
the developing model as a cost function

F =[x — We|, (6)

where F represents the cost value for each set of data and model.
For normally distributed noise with mean zero and standard
deviation g, the expected misfit is maz, where m is the number
of samples. So the expected misfit for the model can be calculated
(Velis, 2008).

P-wave velocity model

Various methodologies try to estimate the P-wave velocity field
from seismic data, mostly based on waveform inversion
techniques. Here we use an empirical relation between bulk
density and P-wave velocity known as Gardner’s equation
(Gardner et al., 1974) to develop a P-wave velocity field from
the seismic reflectivity series. Gardner et al. (1974) derived a
systematic relation between bulk density and P-wave velocity
for sedimentary rocks

p = 1.747,°%, (7)

where p and ¥}, are bulk density and P-wave velocity in t m > and
kms™', respectively. Peterson et al. (1955) showed that the
reflection coefficient of seismic waves with unit amplitude and
perpendicular incidence, while travelling from layer 1 to layer 2,

can be represented by
R=ltmm (p2 Vz) (8)
2 PV

Substituting Gardner’s equation in equation 8 provides a
direct equation for extracting ¥}, from reflection coefficients.
We have used this relation to develop P-wave velocity field
from reflectivity series, and the results for Marmousi synthetic
seismic data will be presented in a later section. The only
parameter that is needed is the velocity of the first layer at the
top of the model, which can be measured easily by methods like
shallow seismic refraction analysis, or obtained from any other a
priori information.

Methodology

Spikes are to be located one by one in the following way. The
first spike, whose tentative amplitude is equal to the maximum
absolute amplitude of the trace but which has an unknown time
lag, is convolved with a known seismic wavelet. The convolved
trace is then subtracted from the recorded seismic trace to produce
a residual trace. The energy of the residual forms the cost value
for the optimisation, as equation 6 shows. The cost function is
minimised by adjusting the time lag, using adaptive simulated
annealing as the search procedure to yield the best arrival time
for the spike. This spike, with tentative amplitude but exact time
lag, is then saved in the developing model of the reflectivity series.
The convolution of the seismic wavelet with this reflectivity series
gives a model for seismic trace, which is subtracted from
the original recorded trace to produce a new dataset to search
for the next spike. This procedure continues, locating the spikes
one by one, until the energy of the residual reaches a predefined
minimum criterion, i.e. normally the background noise energy,
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when the search scheme stops automatically. After achieving the
best collection of time lags, the amplitudes of all spikes are
calculated and finalised by using linear least-squares fitting to
the original recorded trace. Figure 1 shows a flowchart of the
algorithm that can be used to develop reflectivity and P-wave
velocity models.

The signal to noise ratio controls the automatic procedure to
switch off the minimisation algorithm automatically. Therefore,
there is no need to make any predefined assumption about
the number of spikes. The resulting reflectivity series can be
compared with the output of sparse spike deconvolution
algorithms. However, conventional deconvolution operators
are identical to a mathematical inverse of the seismic wavelet,
and in those methods the wavelet must be minimum-phase in
order to design stable operators. In our method the reflectivity
series is constructed without computing any operator, and the
result is not sensitive to the phase of the seismic wavelet. When
we have achieved the optimised reflectivity series, P-wave
velocities can be estimated by using Gardner’s equation as
described in previous section.

Synthetic data results

First we check how accurately the algorithm will find the
interfaces in a seismic model. The simplest case, to locate a
single reflection or a seismic wavelet, has been analysed for both
minimum and zero phase data. We have selected a Berlage
wavelet (Aldridge, 1990) as the minimum-phase seismic
wavelet, and the zero-phase wavelet is a Ricker wavelet. Both
wavelets have a dominant frequency of 30 Hz but are delayed
by 50 and 100 time samples, respectively. As Figure 2 shows,
extracting reflectivity spikes by means of ASA does locate arrival
times for minimum and zero-phase wavelets precisely, and the
amplitudes are accurate. Figure 3 shows a synthetic seismic trace,

Input trace

ASA locates a spike

for reflectivity

Convolve reflectivity

with wavelet

o

n

g |

=1 Subtract result
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2 from trace
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and residual (R) Determine P-wave
velocity
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Fig. 1. Flowchart of random layer-stripping algorithm.

the reflection coefficient sequence that resulted from ASA
reflectivity reconstruction, and the model seismic trace
developed from the reflection coefficient series. Here, the
signal to noise ratio is 10, and the random noise is normally
distributed with zero mean and standard deviation of 0.02. We
used a zero-phase Ricker wavelet with dominant frequency of
30 Hz as the seismic wavelet to create the synthetic trace. As is
obvious in Figure 3, this method not only recovers the true
reflectivity, but also removes random noise from the original
trace. The correlation coefficient between the input data and the
resulting model is 0.9583. The final residual after subtracting the
developed model from original data is mostly the added noise,
so this method can remove noise from the data stream as a by-
product.

Another synthetic example (Figure 4) shows the ability of the
method to detect closely spaced interfaces with either normal or
reverse polarity. All the interfaces are recovered in the model and
the results are satisfactory. The correlation coefficient between
model and data ranges between 0.9492 and 0.9653 which shows
that the results are very close to the original data. These examples
show that the resulting reflectivity series is accurate and can be
used to develop P-wave velocity models.

Marmousi synthetic dataset

In order to process more complex data we have applied the
method to the Marmousi synthetic dataset (Versteeg, 1993).
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Fig. 2. Extracting reflection coefficients for the minimum-phase and zero-
phase wavelets. Top: the wavelets; and bottom: the extracted reflectivity
spikes.
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Fig.3. (a) Synthetic input trace; (b) extracted reflectivity; (¢) modelled trace
based on the resulting reflection coefficients; and (d) the residual after
subtracting the final seismic model from original input trace.
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(a) Closely compacted layers as input data; (b) extracted reflectivity for the layers; (c) the developed model based on reflectivity

solution; and (d) correlation coefficient between seismic data and developed model.

First we extracted the reflectivity series and then we tried to
develop the P-wave velocity model. Figure 5a shows the
Marmousi synthetic seismic data that was used as input to
the algorithm for interface extraction. As Figure 5/ shows, the
interfaces are represented by the reflectivity model very well, and
even complex regions have been recognised by the inversion
algorithm. Convolution of the reflectivity series with the known
seismic wavelet, which has been used to produce the synthetic

Marmousi seismic data
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section, yields the seismic model in Figure Sc. This model has a
high correlation with the Marmousi seismic data. Figure 6a shows
the true velocity field of the Marmousi dataset and Figure 65
represents the P-wave velocity model resulting from our method.
Although the reflectivity series and arrival times have been
estimated with high accuracy, it seems that the velocities are,
to some extent, different from the actual values. However, as
Figure 65 shows, the subsurface structure and velocity contrasts
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Fig. 5. (a) Marmousi synthetic seismic dataset; () reflectivity series extracted from the Marmousi dataset; (c) seismic
model reproduced by using the resulting reflectivity series and known seismic wavelet; and () correlation coefficients
between the Marmousi seismic dataset and developed seismic model.
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Fig. 6. (a) True velocity field of the Marmousi dataset; (b) resulting P-wave
velocity model. The red oval (in the online version) shows velocity contrasts
that were detected in the model.

have been detected in the model. For example, the area
highlighted with the red oval in Figure 65 shows a velocity
contrast zone which has been detected by the method very well.

Field data results

To evaluate the efficiency of our method with real data, we used a
section of seismic reflection field data. A time window of post-
stack seismic section has been selected and processed. Figure 7
displays the real data results. As these results show, this method
can handle real seismic sections with acceptable accuracy. ASA
has located the spikes very well and their amplitudes have been
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Fig. 7.
between data and model.

calculated with acceptable accuracy. High correlation values
between the input seismic section and the resulting model
show that the modelled section, based on the reflectivity series
recovered by our method, fits the original data and the uncertainty
of the solution is slight. Although the seismic wavelet is assumed
to be known, we simply used an approximation of the wavelet for
this real data, and we found that we could achieve good results
even in the case of insufficient information about the seismic
wavelet.

Comparison with minimum entropy deconvolution

Minimum entropy deconvolution (MED) was developed by
Wiggins (1978) to enhance the resolution in seismic data when
high amplitude reflections appear in the trace (e.g. bright spots).
MED does not rely on assumptions about the phase of the wavelet
or the reflectivity series spectrum. Moreover it tries to find the
minimum number of spikes needed to represent the reflectivity
just by using the recorded seismic trace. The details of the
minimum entropy deconvolution process can be found in
Wiggins (1978), Cabrelli (1985), and Sacchi et al. (1994). This
method aims to maximise a norm ¥ known as Varimax, which
can represent some measure of simplicity in the data. The word
‘Varimax’ comes from maximising the normalised variance and
can be represented in mathematical form as below:
vt

V= ZV and V; = Z(Ey,,)

where yj; is a matrix containing seismic traces filtered by the MED
filter:

©)

Ny
yi = kaxi,j—ka (10)
k=1

where x and f are seismic traces and the MED filter, respectively.
In order to calculate the MED filter, one can differentiate /" with
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(a) Real seismic section; (b) reflectivity series of the earth; (c) resulting model of the earth; and () correlation coefficients
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Fig. 8. (a) Synthetic seismic trace with five reflectors; (b) ASA result for reflectivity series; (¢) MED results with

filter length equal to 70 samples; and (d) MED results with filter length equal to 200 samples.

respect to the filter coefficients to maximise the Varimax
(Wiggins, 1978).

Here we make a simple comparison between the ASA random
layer-stripping method and the MED method. Since these
methods have much in common this comparison makes sense.
Both methods make no restrictive assumption over the seismic
wavelet or the reflectivity series. Also they try to extract
reflectivity series by optimising some norm. ASA minimises
the [, norm of the difference between model and data to
locate spikes, while the MED tries to maximise the Varimax.
Furthermore, they represent models for the reflectivity of the
earth that contain the least number of spikes that can reproduce
the seismic trace. By using the MED method one tries to compress
the wavelet to a spike. Since the Varimax is unaffected by the
spacing or polarity of the spikes (Wiggins, 1978) the MED
method requires specific parameterisation to locate the time
lags of spikes. Also, the coefficients of the MED filter must be
scaled accurately to achieve meaningful amplitudes. Figure 8
shows a synthetic trace which has been processed by ASA
and MED to extract reflectivity series. In MED some spikes
with small amplitude appear in the output, which is not desirable.
Furthermore, the results of the MED process are highly dependent
onthe filter length. Itis obvious in Figure 8 that inappropriate filter
length can lead to unrealistic spikes that weaken the accuracy. On
the other hand, ASA does detect the time locations of the spikes
successfully, and there is no implausible spike in the resulting
reflectivity series. Amplitudes are also well developed and
represent the true reflection coefficients that had been used in
the original synthetic trace. Therefore, the results from ASA
reflectivity modelling are more accurate, and this method
performs better than MED algorithms.

Conclusions

We have developed a random layer-stripping method to recover
reflectivity series and the P-wave velocity field, by combining
reflectivity inversion and layer-stripping algorithms. Adaptive
simulated annealing has been used as a global optimisation tool to
locate spikes in the reflectivity model, in arandom search scheme,

and linear least-squares fitting determines the amplitudes of the
reflections. By including Gardner’s equation in the reflection
coefficient expression, we could develop a method to estimate the
P-wave velocity field in a top-down scheme for the Marmousi
synthetic dataset. Our method was efficient in detecting the series
ofinterfaces in both synthetic and real seismic data. Moreover, the
method detects velocity anomalies and dipping reflectors very
well. The resulting reflectivity series from our method is a solution
to the seismic sparse-spike deconvolution problem. Comparison
with the minimum entropy deconvolution method showed that
our algorithm would perform better in the detection of reflectivity
spikes.
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