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Abstract. Data processing techniques are often used to estimate the noise-free response of marine controlled-source
electromagnetic (CSEM) data and magnetotelluric transfer functions. We have implemented a new CSEM data processing
scheme that uses a robustmethod based on independent component analysis (ICA) to extract interpretable datasets fromnoisy
marine CSEM data. We applied the data processing scheme to signals from a new CSEM observation system comprising
a remotely operated vehicle (ROV) and anoceanbottomelectromagnetometer (OBEM).These datasetswere obtained around
the IheyaNorth hydrothermalfield,OkinawaTrough, Japan. The observation systemallows a small-scaleCSEMsurvey to be
conducted in areas of steep topography, such as hydrothermal fields, because the ROV can deploy the OBEM at the exact
observation site. The results show that the coherent and environment noise that exists in the raw time series is reduced
sufficiently by ICA processing. It makes interpretation of the resulting electric field data possible. The results also show that
the processed data has a higher signal-to-noise ratio in the middle-to-high-frequency band than the data without ICA. The
normalised spectrum, obtained by normalising the observed data from the hydrothermal area, indicates that a conductive
anomaly exists in the near-offset area around the OBEM.We apply 2D inversion to the electric field data and find that a low
resistivity body exists beneath theOBEMand 50moffset from theOBEM.This resistivity structure is consistent with images
taken by the ROV that show characteristic organisms in hydrothermal seepage around the OBEM site.

Key words: controlled-source electromagnetic method, hydrothermal vent, independent component analysis, Okinawa
Trough, robust data processing.
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Introduction

The controlled-source electromagnetic (CSEM) method has
been used in the last decade as a tool for exploring marine
environments (Constable, 2010; Streich, 2016). For example,
this method has been applied to surveys for hydrocarbons
(Ellingsrud et al., 2002; Constable and Srnka, 2007; Streich,
2016), gas hydrates (Schwalenberg et al., 2010; Weitemeyer
et al., 2011) and a fault system in bending oceanic crust
before it sinks into the subduction (Naif et al., 2015). Most
data analyses of the CSEM method use forward or inversion
schemes to estimate the resistivity structure beneath the earth.
These schemes are usually used to fit calculated electromagnetic
data to observed electromagnetic data. However, the observed
electromagnetic field data are generally noisy and/or biased. In
general (on land and seafloor), noise arises from the equipment
(Constable, 2013), power grids (Nockles et al., 2009), sporadic
noise (Strack et al., 1989), ocean currents (Kasaya and Goto,
2009), airwaves (Løseth et al., 2010;ChenandAlumbaugh, 2011;
Wirianto et al., 2011) and so on. Data processing techniques are
used to decrease the noise components and to extract interpretable

data from the observed electromagnetic fields and are
indispensable in estimating the noise-free response of marine
CSEM data. As a result, noise reduction can improve estimations
of resistivity structures beneath the surface.

Careful treatment of noise is essential for small-scale CSEM
surveys in a hydrothermal area. Exploration around hydrothermal
fields is becoming important, as they provide mineral resources
of high quality for engineering applications and hydrothermal
vent organisms for scientific research. From previous research,
hydrothermal vents and mounds are considered to be electrically
conductive, as they are a potential resource for metals such
as Cu, Zn, Ag and Au (Bartetzko et al., 2006; Spagnoli et al.,
2016), although the resistivity structure beneath the seafloor
still remains. However, exploration in such areas is difficult
for several reasons. One reason is the topography around
hydrothermal vents. A hydrothermal vent can create a tall
chimney with height of up to 20m (Delaney et al., 1992).
Figure 1 shows the seafloor topography in the Iheya North
hydrothermal field in the Okinawa Trough, Japan. The figure
also shows the tall chimneys and knolls created by hydrothermal
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vents, which form amajor part of the topography in this area. This
topography makes traditional CSEM surveying, conducted
by towing cables, difficult because the cables must be towed
far above the chimneys, which reduces the amplitude of the
electromagnetic response from the subsurface. Another reason
is the limited spatial extent of the hydrothermal fields. Although
traditional CSEMmethods are used for conducting hydrocarbon
surveys covering several kilometres in extent, hydrothermal vents
are generally densely distributed over an area of several hundred

metres. Exploration of small spatial extent requires stable and
accurate measurement of the positions of transmitters and
receivers, which is difficult even with modern survey systems.
To solve the above-mentioned problems, we have developed a
new CSEM survey system based on a remotely operated vehicle
(ROV) and an ocean bottom electromagnetometer (OBEM), as
shown in Figure 2. In this system, the ROV brings the OBEM
exactly to defined locations in the target area, irrespective of its
topography, and the offset between the ROV and the OBEM can
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Fig. 1. Geometry of the CSEM survey showing the topography of the seafloor with contours and colour.
Yellow circles depict ROV transmitters. Red triangles depict OBEM receivers. Identification numbers are
shown for several transmitters and receivers. Yellow arrows depict hydrothermal fluid venting sites shown
in Kawagucci et al. (2013).
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Fig. 2. Simplified sketch of the ROV-OBEMsystem in side and plan views. The ROV transmits electric current
after placing the OBEM at the target location. The ROV transmits electric current every 30 s once it has settled on
the seafloor.
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be determined with high accuracy. However, the ROV can
handle only small amplitudes of electric current because of
its limited output power. Also, the maximum length of the
electric dipoles of the ROV and the OBEM should be less than
a few metres to ensure portability by the ROV. As such, noise
must be decreased by data processing to increase the signal-
to-noise ratio.

In marine CSEM data processing, several techniques are
used to recover a noise-free response function, which can be a
function in either time or frequency domains. Previous
CSEM research involves significant efforts to reduce noise to
sufficiently low levels (Myer et al., 2011). CSEMdata processing
typically comprises general digital signal processing steps.
However, other processes have been used for different targets,
datasets and external field environments. Myer et al. (2012)
pre-whitened and post-darkened observed data to suppress
spectral leakage caused by the time variations in the Earth’s
electromagnetic field. Streich et al. (2013) applied robust
weighted least square fitting to CSEM data that was part
of a magnetotelluric (MT) survey (Egbert and Booker, 1986;
Chave and Thomson, 1989), while other research aims to
decrease the airwave effect by data processing (Chen and
Alumbaugh, 2011).

Recently, independent component analysis (ICA) has been
proposed for addressing signal separation problems (Hyvärinen
and Oja, 2000; Cichocki and Amari, 2002). This method is used
to separate recorded signals that are weighted sums of source
signals into those original source signals. In ICA, information
about original source signals and theirmix is unknown. ICAfinds
a linear representation of the recorded signals so that the
separated source signal estimates are statistically independent,
or are as independent as possible. Because we do not know the
mixingweights, ICA is called a ‘blind source separation’method.
An interesting property of ICA is its robustness against outliers
in data (Hampel et al., 1986), which is important for robust
processing of electromagnetic survey data. ICA has been
applied to sound, image and biomedical signal processing and
has also been used in geophysical data processing (Aires et al.,
2002; Furukawa et al., 2006; Ciaramella et al., 2004; Tsuno and
Iwata, 2015). Murakami and Yamaguchi (2007) used ICA for
analysing geoelectric data that were subjected to a very high level
of noise during a water injection experiment at the Nojima Fault
in Japan. Sato et al. (2017) also used ICA for the processing of
a self-potential survey dataset to decrease its noise level. Both
geoelectric studies show that the noise level could be reduced
sufficiently, but as yet there are few applications of ICA to the
geoelectromagnetic problem.

In this paper, we first present a new CSEM observation
system used in the Iheya North hydrothermal field in the
Okinawa Trough. We describe this observation system, which
uses a ROV and an OBEM for a small-scale CSEM survey. Next,
we explain ICA and the robust data processing algorithm that is
applied to the data collected around hydrothermal areas. The
electric potential data observed with the OBEM are shown to
contain both impulsive noise and high-frequency noise. Our aim
is to extract interpretable CSEM signals from the noisy data,
focusing on one OBEM dataset. We show the processing results
of time series and spectral data without and with ICA. These
processed data are normalised using a dataset obtained away
from the hydrothermal area to obtain the normalised electric field
responses. We then applied a 2D inversion scheme to the electric
field data to estimate the resistivity structure beneath the seafloor.
Finally, we interpret the resistivity structure of the hydrothermal
field and discuss the effectiveness of data processing for the
reduction of noise.

Remotely operated vehicle system

As we mentioned above, we have developed a CSEM survey
system using a ROV and an OBEM as shown in Figure 2. The
ROV is equipped with an electric transmitter dipole with a length
of ~2m. The amplitude of current is limited to a maximum of
50 A. Trading off desired source power and practicability, we
typically transmitted an electric current of rectangular waveform
every 30 s, only once the ROVwas stationary on the seafloor.We
shortened each of the four horizontal receiver arms of the OBEM
to 0.3m to be carried by the ROV. The OBEM then carried two
orthogonal dipoles of 1m length. This arrangement allowed us
to set the OBEM exactly in place inside the target area. After
installing theOBEM inside the target area (e.g. at R4 in Figure 1),
the ROV ran a survey line transmitting an electric current at each
station (T1 to T5). The distance between the transmitter (ROV)
and the receiver (OBEM) was accurately measured with an
acoustic responder. Video and digital still cameras mounted on
the ROV captured graphical information while the ROV moved
in the area. GPS signals were used for time synchronisation
between the transmitter and the OBEM before deployment and
for measuring the drift of the OBEM and ROV clocks after their
recovery on board.

Although there are four channels of electric potential, relative
to a central common electrode attached to the OBEM, one of
the channels did not record properly. We therefore used three
channels to calculate the horizontal electric field components.
As these channels contain high-amplitude periodic noise and
high-frequency noise, observed data at far offsets has a very
low signal-to-noise ratio (e.g. Figure 3). This periodic noise
was thought to arise when observed data were written to the
recording media in the OBEM. As each noise impulse has an
independent duration in time, removing this noise by applying
a moving average filter or a median filter is difficult, and
estimation of the noise waveform by stacking the noise pulses
was unsuccessful. The observed time series is also contaminated
by high-frequency noise, which will be described later. We apply
robust processing to the time series to remove the impulsive noise
and the high-frequency noise.

Method

Weused ICAandsomebasic signal processing to reduce thenoise
in the observed time series. ICA recovers signals only from the
measured data. The ICA method is based on a form of signal
analysis that uses statistical assumptions to enable blind source
separation. In the ICAprocess, observed data are considered to be
composed of linearly superposed mixtures of original signals:

xm�1 ¼ Am�nsn�1; ð1Þ
where x represents the components of observed data, s represents
the original signals and A is a non-singular mixing matrix. The
application of ICA is for the case where s and A are unknown.
Additionally, we define y and B as follows:

yn�1 ¼ Bn�mxm�1; ð2Þ
where amatrixB can be built by splitting up themeasured signals
so that the resulting output vector y is the optimal approximation
of vector s. If B corresponds to the inverse matrix of A, then y is
the same as s. The goal of ICA is to obtain amatrixB in such away
that vector y is close to the original, independent source signals.
An important assumption in ICA is that the components of s are
statistically independent.

One of the important aspects of ICA is that it is a
statistical model. This means that the distribution of a sum of
independent random variables becomes a Gaussian distribution
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from the central limit theorem. The main idea of ICA is
to maximise non-Gaussianity to extract the independent
components of signals. In ICA, optimisation is used to
maximise non-Gaussianity. A popular optimisation method is
FastICA (Hyvärinen and Oja, 2000), which we use here for
processing data. FastICA finds a direction w, which is one of
the rows of the matrix B, so that the projection wTx maximises
the independence of the single estimated source y. Independence
is measured by the approximation of negentropy, which is a
measure of non-Gaussianity. We maximise function JG to find
one independent component:

JGðwÞ ¼
h
EfGðwTxÞg � EfGðnÞg

i2
; ð3Þ

wherew is aweight vector constrained so thatE{(wTx)2} = 1,E{}
indicates the expectation value, G is a suitable approximating
contrast function and n is a standardised Gaussian random
variable. This maximisation requires a whitening of the
observed variables. This means that before the application of
the ICA algorithm, we transform the observed vector x linearly
so that we obtain a new vector ~x that is white, i.e. its components
are uncorrelated and their variances equal unity with zero mean.
To apply the procedure described above, ICA requires the
following assumptions for observed data. First, all the sources
must be statistically independent of each other. These
independent components must be non-Gaussian. Second, the
number of observed signals must be at least as large as
the number of independent components. Finally, matrix A has
to be of full column rank.

Application to field data

We apply robust data processing to the field data acquired from
the IheyaNorth hydrothermalfield in theOkinawaTrough during
the research cruise ‘NT13-22’ (conducted in November 2013)
of R/V Natsushima, a JAMSTEC (Japan Agency for Marine-
Earth Science and Technology) research vessel. These data were
obtained by using the ROV-OBEM survey system loaded on
ROV Hyper-Dolphin. The recorded electric potential in three
channels is shown in Figure 3 with a sampling rate of 1 kHz. As
one can see in Figure 3, a periodic impulsive noise contaminates
the observed data. The impulses occur approximately every
0.29 s. This delta-like function has a broad spectrum in the
frequency domain and causes noise in the whole response
spectrum.

Figure 4 shows aflowchart of our processing scheme. First,we
divided the whole time series into segments that each includes a
signal generated by the ROV. These time series are decomposed
into several independent signals using the ICA algorithm. In
this example, we used either two or three independent signals,
chosen by a trial-and-error method. Next, we removed the noise
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Decompose time series of channel data

Remove noise components in decomposed signals

Reconstruct time series using signal components

Take a median value of each time step

Calculate electric field from channels

Apply FFT

Iterate 10 times?
No
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Post-processing

Fig. 4. Summary of the statistical data processing scheme. The loop
implements the statistical processing algorithm for a given time series of
three channels. It reconstructs recovered signals after removing the noise
components.
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components in the decomposed signals. A decomposed signal
was determined to be a noise component if its correlation
coefficient with the source signals was not the highest value in
the correlation coefficients between the decomposed signals and
the source signals. After removing the noise components, the
estimated electric potential is recovered using a mixing matrix
based on Equation 1.

In the FastICA algorithm, the initial value of w is a random
value on the unit circle in the coordinate space of whitened
observed signals. Convergence of the ICA algorithm depends
on the starting value ofw. As the ICA algorithm can fail its signal
decomposition depending on the initial choice of w, we apply it
10 times and take the median value for each time step to avoid
failure of the ICA algorithm. Figure 5 shows an example of the
decomposed signals for the transmitter–receiver pair T5 and R4
(Figure 1). From this figure, it is obvious that the ICA algorithm
can decompose original time series into rectangular signal
waveforms and impulsive noise components, although there
still exists some small impulsive noise in the rectangular signal
waveforms. One can see that noise components include both
periodic and fluctuating noise in the baseline. However, the
amplitude of fluctuating noise is smaller than that of periodic
noise. Themixing values of the signalwaveform for channels 1, 2
and 3 are 0.0096, –0.0036 and 0.0028, respectively. These
channel numbers can be seen in Figure 2. The values for the
impulsive noise components are –0.0005, –0.0006 and –0.0006
for channels 1–3, respectively. This shows that the mixing
values of the impulsive noise have a similar value for each

channel, which in-turn indicates that the impulsive noise
comes from an instrumental source and not from the source
signal. If this noise were caused by the source current, the
mixing value would be different for each channel because the
offset is different. This noise reduction process allows us to
extract the instrument noise and evaluate its amplitude. Noise-
free electric potential channel data are obtained after removing the
noise components.Whenwe decomposed the observed signals to
three independent signals for the pair T5 and R4, the original
rectangular signal waveform was decomposed into two different
waveforms contaminated with the noise components. Therefore,
we chose to decompose the observed signals to the two signals
shown in Figure 5. For the other pairs from T1 to T4 and R4, we
decomposed the observed signals to three independent signals.
Twocomponents of horizontal electricfieldswere then calculated
from the recovered three-channel data.

Figures 6 and 7 show the electric fields without and with data
processing, in the time and frequency domains. These electric
fields are the components parallel to the transmitter dipole of the
ROV. These observed electric fields and transmitter currents are
oriented close to the east–west direction, which is the broadside
dipole configuration in the marine CSEM survey. Figure 7a
shows that the recovered time series with ICA processing
could remove impulsive noise compared with the original time
series for the pair T1 and R4. One can see that the amplitude of
high-frequency fluctuations in Figure 6a is close to the amplitude
of the step in the rectangular wave, although the high-frequency
amplitude in Figure 7a is smaller than the amplitude of step in the
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rectangular wave. As the original source signal does not have
thesefluctuating signals, theyare considered tobehigh-frequency
noise caused during observation and are reduced successfully.
Figure 7b shows that their time series do not change before
and after data processing. This is because the mixed value of
noise in this pair is small compared with the rectangular signal
components (Figure 5). This suggests that ICA processing could
decompose the impulsive noise and high-frequency noise if its
amplitude is large enough compared with the amplitude of the
rectangular signal.

The spectra of the T1-R4 pair without and with ICA are
different across the whole frequency range (Figures 6a and 7a).
It is obvious that the impulsive noise in the time series affects
a broad range of frequencies. It can be observed that the spectrum
is close to flat from 1 to 100Hz in Figure 6a. This frequency band
corresponds to the periodic impulsive noise in the time series. On
the other hand, the spectrum with ICA is not flat in the same
frequency band since it does not have a high-amplitude impulse.

The spectrum of the T5-R4 pair without and with ICA does not
change much (Figures 6b and 7b) because each time series is
similar to the other.

We applied this ICAprocessing scheme to all datasets (T1, T2,
T3, T4 and T5) for receiver R4. Figure 8 shows the amplitude and
phase of the spectrum of the broadside electric field as a function
of frequency and distance between theROVand theOBEM.Note
that the spectrum of the electric field is Green’s function, which is
normalised by the transmitted source spectrum. From this figure,
one can see that the spectrum is similar at low frequencieswithout
(Figure 8a, b) and with (Figure 8c, d) ICA processing. However,
the spectra at middle-to-high frequencies are largely different
fromFigure 8a, c. This is the same for the phase spectrum aswell.
These trends are explained by the same reason given above.
As the impulsive noise in the time series affects largely the
middle-to-high frequency range, the spectra in these regions
are contaminated. One can also see that the processed
spectrum becomes smoother in space compared with the result
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without ICA processing (Figure 8). This smooth spectrum is
considered to be reasonable because electromagnetic fields are
governed by the diffusion equation, whichmakes the distribution
of the spectrum smooth in space under the noise-free condition.

We normalised these spectrum amplitudes by the responses
obtained outside the hydrothermal area using the same survey
system (the site location is 1.5 km east of the target area in
Figure 1). The normalised spectrum is calculated by dividing
the amplitude of the spectrum in Figure 8 with the amplitude of the
spectrum from the remote area. This provides uswith an apparent
resistivity map because the normalised spectrum decreases the
diffusive attenuation of the observed electromagnetic fields.

Figure 9a and b show the normalised spectrum without and
with ICA processing, respectively. From the results, we find
that the non-processed response has a larger normalised ratio
than the processed response at middle-to-high frequencies. This
means that the non-processed response indicates larger electric
fields at these frequency bands. However, these apparently
larger electric fields are artefacts, generated by the impulsive
and environmental noise. After data processing, we obtained a
lower normalised ratio, indicating that the resistivity in this
area is low, which is reasonable for a hydrothermal area. As
this normalised ratio represents apparent resistivity, a higher
frequency reflects the resistivity at shallow depth and a lower
frequency reflects the resistivity structure at greater depth. From
Figure 9b, one can see that the resistivity is low in the deep area.

To confirm this interpretation, we applied 2D inversion to the
observed data using MARE2DEM (Key, 2016). Broadside
electric field responses were computed at four frequencies:
0.13, 0.50, 2.00 and 7.97Hz, which are similar to the period
of the transmitted rectangle waveform. Since these frequencies
are low considering the skin depth for the target area, the
resolution of the structure is not high. We used the topography
around the observation area, which has 2m resolution in the
horizontal direction, to define the model interface. The initial
model consists of seawater with a resistivity of 0.3125 �m and a
half-space with a resistivity of 10�m. Figure 10a and b show the
inversion results without and with ICA processing, respectively.
Both inversion results converged with a target root mean square
(rms) misfit 1.0 after 18 and 11 iterations, respectively. The
inversion result without ICA processing depicts an extremely
high-resistivity body beneath the seafloor around T4 and T5
(feature A). This resistive body continues to the location of the
OBEM. The inversion result with ICA processing also shows a
high-resistivity body in a similar place, but its size is smaller than
the one without ICA processing and is limited to shallow depths.
Both inversion results image low resistivity bodies under the
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Fig. 10. Resistivitymodel of the inversion results (a) without ICAprocessing and (b) with ICA processing applied. Fivewhite
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resistive shallow sediment near the OBEM (features B and D).
The size and the resistivity of these features are similar to each
other. It seems that this low resistive body continues up to
the seafloor. There is another low-resistivity body beneath T1
and T2 in Figure 10b. Its resistivity is ~10 times lower than
the same location in Figure 10a. Overall, it appears that the
resistivities without ICA processing are larger than those
with ICA processing. The reason for this can be explained
from Figure 8. This figure shows that the amplitude of the
spectrum without ICA processing is larger than the one with
ICA processing. The extremely high-resistive zone (A in
Figure 10a) is a result of the larger amplitude of the spectrum
obtainedwithout ICAprocessing and is probably a false structure,
perhaps due to spike noise in the observed time series.

Since the in situ resistivity is still unknown in this target region,
as far as the authors know, further discussion of the distribution
of conductive hydrothermal fluids or deposits should be based
on core samples. Here, we made a preliminary interpretation
based on photographs taken by the ROV. From the photos,
hydrothermal fluid and gas seepage from the seafloor appears
between R4 and T5 (~10m wide). Characteristic bacteria and
mussels, typical organisms found at hydrothermal seepages, are
also seen around the area. The inversion results from Figure 10
show the low resistivity around the location of the seepage
(features B and D). The photos also show that there are
characteristic mussels in colonies on the left side, far from T1.
This might support the conclusion that the inversion result with
ICA processing (feature C; Figure 10b) is more reasonable than
the one without ICA processing (Figure 10a), which has a higher
resistivity in the same area.

Conclusion

We have presented the ICA method for robust processing of
data obtained around the Iheya North hydrothermal field,
Okinawa Trough, Japan. The data was collected in 2013 using
a newly developed CSEM survey method based on a ROV-
OBEM system, which is useful for both small-scale surveys and
surveys in areas of steep topography. In the electric potential
data obtained, there is periodic and environmental noise,
which makes the interpretation of observed data difficult. After
robust processing of the data, we found that impulsive and
environmental noise components could be reduced effectively.
As a result, the spectrum of electric fields with ICA looks
reasonable, especially at middle-to-high frequencies, compared
with the spectrum without ICA. The spectrum of electric fields
was normalised using a spectrum from data acquired away from
the hydrothermal areas. This normalised ratio shows that
the apparent resistivity is low at shallow depths around the
OBEM location. The inversion results also show that low
resistivity bodies exist beneath the OBEM and stations T1 and
T2. The location of the resistivity anomaly is also consistent with
images taken by the ROV, which show seepage with typical
hydrothermal vent organisms in the same area. The applications
of the robust processing method described here are not limited to
CSEM data. Noise in time series data can be reduced in a similar
manner for different types of survey such as MT surveys, direct
current surveys and transient electromagnetic surveys.
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