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Resistivity image of the Philippine Sea Plate around the 1944 Tonankai
earthquake zone deduced by Marine and Land MT surveys
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The Nankai Trough is an active convergent region in southwest Japan and mega-thrust earthquakes have
repeatedly occurred in some areas of its plate-boundary interface. Generation of mega-thrust earthquakes is
inferred to be related to the existence of water. The resistivity structure is very sensitive to the existence of
water. For that reason, it is important to obtain the resistivity image around the rupture area of mega-thrust
earthquakes. We carried out land and marine magnetotelluric surveys in the Kii Peninsula and the offshore
Kii Peninsula where the 1944 Tonankai earthquake occurred. We constructed a 2D resistivity model using an
inversion technique. The modeled resistivity structure portrayed the Philippine Sea Plate as a resistive region.
However, its resistivity becomes more conductive as the plate subducts, showing 10 2-m around the down-dip
limit. These characteristics are considered to relate to the water. Therefore, we infer that water might control the

generation of mega-thrust earthquakes.
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1. Introduction

The Nankai Trough is located offshore of the Kii Penin-
sula and is an active convergent region in southwest Japan.
Around this region, mega-thrust earthquakes with magni-
tudes greater than 8 have repeatedly occurred on some por-
tions of the plate-boundary interface (e.g. Ando, 1975).
The 1944 Tonankai earthquake was generated at the plate-
boundary interface in this area. Large earthquakes occurred
around the trough axis 100 km offshore southeast of the Kii
Peninsula on 5 September 2004.

Multi-channel seismic (MCS) and ocean bottom seis-
mometer (OBS) reflection surveys were carried out around
the Nankai trough region to elucidate what occurred on the
thrust earthquake rupture zone. Park et al. (2002) reported
the existence of splay faulting that branches upward from
the plate-boundary interface at a depth of 10 km. Moreover,
the existence of fluid is indicated because of reverse polar-
ity reflections. Nakanishi et al. (2002) performed a wide-
angle seismic survey and constructed a crust and uppermost
mantle P-wave velocity model across the Nankai Trough
around the Tonankai earthquake rupture zone. According to
Nakanishi et al. (2002), the thickness of the oceanic layer
is 7-8 km and dip angle across the rupture zone of the 1944
event is estimated at 11°. That study also determined that
the rupture zone of the 1944 event does not reach the fore-
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arc mantle and concluded that this depth agrees with the
locked zone defined from a thermal model by Hyndman et
al. (1995).

Magneto-telluric (MT) surveys have been carried out to
obtain electrical resistivity images of the subduction zone.
These help us to investigate the existence of water which
plays an important role in the occurrence of earthquakes.
Therefore, the resistivity image is very important data.
For Shikoku, southwest Japan, Yamaguchi et al. (1999)
showed a highly resistive Philippine Sea Plate overlaid with
a thin conductive layer by using the Network-MT method
(Uyeshima et al., 2001). In the ‘Electro Magnetic Study
of the Lithosphere and Asthenosphere Beneath’ the Juan
de Fuca Plate (EMSLAB) project, seafloor and land elec-
tromagnetic (EM) surveys were carried out in the area of
the Juan de Fuca subduction system. (Wannamaker et al.,
1989). The subducting plate image from ocean to land was
imaged by forward modeling.

In the Kii Peninsula, Fuji-ta ez al. (1997) found the top of
a conductor at a depth of 20 km. Kasaya et al. (2003) also
detected a conductor at a depth of 20-50 km by forward
modeling of land ULF-MT data. However, their results
retain the ambiguity of structural effects below the seafloor.
In spite of the importance of a deep conductor in discussing
the generation of mega-thrust earthquakes, there have been
no previous studies imaging the resistivity structure around
a whole area (from up-dip to down-dip limits) of a rupture
zone of a mega-thrust earthquake.

The object of this study is to estimate a complete resis-
tivity image of the subducting Philippine Sea plate caus-
ing mega-thrust earthquakes and to compare with other
geophysical evidence. We made observations on both the

209



210

—> 1024s
—>10923s
1 unit =50 km

34

T. KASAYA et al.: RESISTIVITY IMAGE OF THE PHILIPPINE SEA PLATE

135

136

Fig. 1.

Destribution of the observation sites around the Kii peninsula and Nankai trough. Triangles, small circles, and small squares denote land

electromagnetic observation sites, high frequency type OBEM (HF-OBEM), and long-term OBEM (LT-OBEM), respectively. A shadow zone with
dashed line indicates the 1944 Tonankai coseismic slip area with a displacement greater than 0.5 m (Kikuchi et al., 2003). Arrows show the real

induction vector at 1024 and 10923 second.

seafloor and land and estimated a resistivity model by ap-
plying an inversion technique to the data. The down-dip
limit of the rupture area of the 1944 Tonankai earthquake
extends below the Kii peninsula (Kikuchi et al., 2003). For
that reason, it is important to observe both on the sea floor
and on land. Our observation and analysis will contribute
to obtaining a complete resistivity image of this subduction
zone.

2. Data Acquisition and Time Series Processing
2.1 Marine Magneto-telluric survey

We used two types of the Ocean Bottom Electro-
Magnetometer (OBEM) for marine MT survey in KY02-12
cruise, by JAMSTEC R/V Kaiyo. One is denoted as “HF-
OBEM?” in this paper, and has been developed by EMI Inc.
with the capability of making high-frequency EM record-
ings with a 6.25 Hz sampling rate. This instrument mea-
sured two horizontal magnetic components with induction
coil sensors and two electric components with silver-silver
chloride electrodes. The advantage of this instrument is that
it can obtain information of a shallower resistivity structure
with a high sampling rate. Acquired data were stored on
a compact flash memory. We deployed seven HF-OBEMs
and two HF-OBEs (similar to the HF-OBEMs), on a profile
(Fig. 1) between 22-23 December 2002. We recovered all
HF-OBEMs at the end of this cruise (31 December 20031
January 2003).

Another type of OBEM is designated as Long-Term

OBEM (LT-OBEM) in this paper, and this can measure
three components of magnetic-field variations with fluxgate
magnetometers and two horizontal components of electric
field variation with electrodes. The maximum lifetime of
this instrument is about a year on the seafloor. We deployed
LT-OBEMs at two sites during the KY02-12 cruise; these
are shown as 1L and 4L in Fig. 1. The recovery opera-
tion was carried out on 20 May 2003 during the KR03-05
cruise using JAMSTEC R/V Kairei. In our survey, continu-
ous electromagnetic data sets for three and six months were
recorded with a 30 sec sampling rate.

We estimated a MT response (apparent resistivity and
phase) using the robust remote reference method (RRRMT)
of Chave et al. (1987). HF-OBEM data have unknown
noises that were independently recorded at each site data.
Almost all the noise is high frequency (higher than 0.1
Hz) as well as spikes. Therefore the time series of HF-
OBEM were resampled at 4 sec. Then we chose sections
of time series data with high coherency between the MT
sites by visible selection. Finally, the selected time series
were analyzed using the RRRMT method to obtain enough
quality MT responses (Goto et al., 2003). The LT-OBEM
time series is free from noise and cross-reference processing
for each time series was carried out.

2.2 Long-term Magneto-telluric observation in Kii
peninsula

On land, MT measurements were started from Decem-
ber 2002 at the three sites shown Fig. 1. Measurements at
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Fig. 2. Apparent resistivity (upper panel) and impedance phase (lower panel) at sites SMZ, YNK, 3H, 4L, 7H and 9H. Lines indicate the calculated

MT responses from the resistivity model in Fig. 3.
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Fig. 3. Best-fitting regional resistivity model across the Nankai Trough and Kii Peninsula. Triangles indicate the horizontal position of observation
sites used for the inversion procedure. The 1944 Tonankai earthquake rupture zone are estimated by Kikuchi et al. (2003). Interseismic locked and
transition zone estimated geothermal data (Hyndman ez al., 1995). A dashed line shows the plate boundary estimated by Nakanishi ez al. (2002).

YNK ended in February 2003. However, synchronous ob-
servation between SMZ and SNK continued until the end
of May 2003. We used three MT systems with a fluxgate
magnetometer (Tierra Tecnica U43 system). This system
is continuously synchronized by a GPS clock signal. Con-
sequently, we were able to carry out high-frequency sam-
pling observations and remote-reference processing (Gam-
ble et al., 1979). Electromagnetic data with three magnetic
and two horizontal electric components were stored at 4 Hz
sampling rate on 384 MB compact flash memory. Some
troubles occurred with the flash memory (Kasaya et al.,
2003), but sufficient data quality and quantity were obtain-
able. The RRRMT method was also adopted for land MT
data. The remote reference site was used by having another
site observed simultaneously.

3. 2D Inversion and Resistivity Structure

Marine data acquired by HF-OBEMs included some
noise. Moreover, non-diagonal components at sites located
near a coastline were shown to be very large. Therefore,

we used only four marine sites for 2D inversion analysis
(Fig. 1). The induction arrow from the land stations sud-
denly changes at the period range of from 50 to 400 sec.
However, induction arrows show an almost constant angle
(about S30°E) at a longer period range. Therefore, we only
used data sets of SMZ and YNK at the long period range
from 500 to 10,000 sec, but not the SNK data set because
the data quality at long period range was poor. Furthermore,
seismic structures around the Nankai Trough show a 2D
structure along the trough axis (Park et al., 2002; Nakanishi
et al., 1998; Nakanishi et al., 2002). We therefore chose
N61.2°E as the strike direction of the 2D analysis.

We performed a 2D analysis for selected TM-mode data
to construct the 2D resistivity model because the TM-mode
is too robust against 3D structures (Ting and Hohmann,
1981). We used the 2D inversion code with the smoothness
constraint based on Akaike’s Bayesian Information Crite-
rion (ABIC) developed by Uchida and Ogawa (1993). The
original program code did not consider marine MT analy-
sis. For that reason, we used an improved code to be able
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to treat the MT response on the seafloor (Goto et al., 2002).
The initial model was a 100 ©2-m half-space with a fixed
0.25 ©2-m ocean of known bathymetry at both sides of the
half-space. The calculation area extends 3000 km deep and
about 2000 km on either side of the body to avoid edge ef-
fects. We adopt the final model with the smallest ABIC
and RMS misfit after 20 iterations as the final model. Fig-
ure 3 shows the best-fit model with the position of obser-
vation. Observed responses and calculated sounding curves
deduced from Fig. 3 are shown in Fig. 2.

4. Discussion

The salient result of this study is the resistivity change of
the subducting Philippine Sea Plate (Fig. 3). The uppermost
mantle below the ocean in particular is shown as a resistive
region (up to 500 Q2-m at a depth of 40 km), and its resis-
tivity decreases to about 10 €2-m with the plate subducting
beneath the island arc crust (A in Fig. 3). We carried out a
sensitivity check by forward calculation to confirm the re-
liability of this transition. Forward tests were performed
for models to which the portion below the plate boundary
was changed, respectively, to 20, 50, 100, 200, and 500
Q-m. Consequently, MT responses deduced by the modi-
fied model could not explain the observed responses if the
modified resistivity was over 100 2-m. Resistivity of the
subducted plate must therefore include such a decrease of
resistivity with subduction. The locked zone (Hyndmann
et al., 1995), except for the up-dip limit, is also included
in the detected conductive portion. This conductive locked
zone consists of the dehydration area of the crust (Yamasaki
and Seno, 2003). Moreover, the bottom of the conductor, at
depths 40-60 km, also agrees with the surpentinized mantle
as estimated by Ulmer and Trommsdorff (1995). There-
fore, the possibility exists that the conductive zone below
the coastline is related to dehydration and that the water
of dehydration may control mega-thrust earthquake genera-
tion.

The oceanic crust is portrayed as a layer with a resistivity
of about 10 2-m (C in Fig. 3). The upper part of the oceanic
crust is formed by sediment filled with the pore water. How-
ever, resistivity of the subducting oceanic crust at a depth of
10—15 km increases around 40—-60 km offshore (B in Fig. 3).
This resistivity transition of the oceanic crust may be inter-
preted as the diagenesis of the sediment, mechanical com-
paction and the smectite-illite phase transition. Therefore,
it is estimated that the amount of water generated by the di-
agenesis raised up to the sea floor and formed a spray fault
and decollement beyond the plate boundary.

Moreover, region “B” in Fig. 3 coincides with the posi-
tion where the dipping angle changes and the up-dip limit of
the rupture area (Park et al., 2002; Nakanishi et al., 2002).
Thus, the less fluid condition may be related to the locked
plate boundary.

5. Conclusion

We obtained a regional resistivity image of the subduct-
ing Philippine Sea Plate along the 1944 Tonankai event. Re-
sistivity model characteristics are as follows:

(1) Oceanic crust shows a conductive layer with some
undulation.
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(2) The subducting Philippine Sea Plate is imaged as a re-
sistive region and its resistivity decreases with subduction.

(3) Resistivity around the up-dip limit of the 1944 event
is relatively high, while the area around the down-dip limit
shows low resistivity (high conductivity).

The 1944 Tonankai rupture area is located almost in the
conductor. Dehydration from oceanic crust and mantle was
estimated around the detected conductor. Therefore, it is
suggested that the dehydration water controls the generation
of a mega-thrust earthquake.
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