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Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater re-
sources using only geophysical methods is costlier in consolidated rocks such as volcanic
rocks and crystalline basement complexes in Africa because of the highly heterogeneous
structure of aquifers. Therefore, advanced analysis of remotely sensed images and an
accurate assessment of groundwater resources are crucial before carrying out a geophysical
prospecting survey. This study proposed a joint analysis of satellite images from optical
sensors and synthetic aperture radar (SAR) which aimed to enhance potential mapping
accuracy of groundwater resources in crystalline rock areas in a semiarid region. The
backscattering coefficient of the SAR data analysis effectively detected the zones of rela-
tively high weathering degree and thus having thick permeable regolith. In addition, a
modified clay index calculated from the four band reflectances of the optical sensor im-
age—red, near infrared, and two shortwave infrared bands—was applied to discriminate
clay-rich zones from high vegetation activity zones. The clay-rich zones detected corre-
sponded with the highly weathered zones estimated from the small SAR backscattering
coefficients. The zones also corresponded with a large density of faults and lineaments and
furthermore were verified by high potential yields from groundwater wells. The thickness of
weathered zones was likely to increase with a decreasing backscattering coefficient and
higher modified clay index values. Conversely, large backscattering coefficients in the narrow
zones along the major lineaments from large volumetric scattering because of high vege-
tation activity, as confirmed by the large vegetation index values, suggested that high
moisture content was retained in the soils. In fact, the potential yields of the groundwater
wells tended to increase near the lineaments. Accordingly, shallow groundwater occurrence
is plausible in those zones.

KEY WORDS: Regolith, Backscattering coefficient, Vegetation index, Clay index, Lineament,
Mozambique.

INTRODUCTION

Groundwater is a crucial water source for
industry, agriculture, and daily life across the world,
particularly in Africa which has extensive arid and
semiarid regions. Groundwater occurrence in such
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regions, especially those with hard rocks, is scarce
because of low precipitation and high evapotran-
spiration rates (Wright 1992). The occurrence and
flows of groundwater are mainly controlled by the
distribution and properties of mechanically weak
zones of rocks that have been affected by frac-
turing, faulting, and weathering (Wright 1992;
National Research Council 1996; Foster 2012).
Such zones are capable of storing and transmitting
more groundwater than intact rocks. A close
relationship between water yields at wells and the
thickness of the weathered zone in crystalline
rocks has been reported in many areas (e.g., Jones
1985; Wright 1992; Chirindja et al. 2017) where
groundwater serves as the main factor of weath-
ering that forms regolith aquifers through hydrol-
ysis and dissolution. In addition to fracturing and
faulting, weathering is controlled by several other
factors including rock texture, porosity, and crack
density, but the duration of basement rock expo-
sure to the atmosphere is the most important
(Jones 1985; Acworth 1987; Worthington et al.
2016; Rocchi et al. 2017).

Mapping the extent and thickness of weathered
zones in a target area requires a sufficient number of
drilled wells and regional geophysical surveys, of
which electric sounding and electromagnetic surveys
are the most common. Owing to the strong hetero-
geneities of basement aquifers generated from
crystalline rocks, many geophysical surveys with
dense intervals are necessary, but the costs of these
are not generally practical in African countries.
However, satellite remote sensing using optical and
radar images combined with well data is cheaper.

Optical images of reflectance spectral data
provide useful information on physiological activity
of vegetation and distribution of specific soil or rock
type. This feature can contribute to potential map-
ping of groundwater in crystalline basements (Sha-
ban et al. 2006; Petrakis et al. 2016; Magaia et al.
2018). A major advantage of the radar system over
the optical sensor system is that it can acquire ima-
gery day or night regardless of weather conditions
and cloud cover (Engman 1991). This advantage has
been used in semiarid regions of Africa for
groundwater resource assessment by hydrogeologi-
cal mapping and lineament extraction (e.g., Koch
and Mather 1997; Corgne et al. 2010). The
backscattering energy of synthetic aperture radar
(SAR) imagery is directly related to soil moisture in
addition to surface roughness (Engman 1991; Shi
et al. 1997; Gharechelou et al. 2015; Saepuloh et al.

2015); thus, it can be used for detecting recharge and
discharge zones. In addition, the backscattering is
affected by vegetation cover (Trudel et al. 2012;
Kornelsen and Coulibaly 2013; Sabaghy et al. 2018).
To avoid such affect, the use of SAR imagery would
be more beneficial for arid and semiarid regions with
sparse vegetation cover.

As weathering progresses, water–rock interac-
tion decomposes and dissolves rocks and, conse-
quently, produces secondary minerals. Physical and
mechanical properties are also degraded, accentu-
ating erosion rate and increasing surface roughness
in slope areas, while smoothing the surface in low
gradient areas through the formation of clay min-
erals (Jones 1985; Rocchi et al. 2017). Specular
reflection of the incident microwave energy is pre-
dominant in such flat areas where regolith aquifers
tend to be formed on top of the fractured bedrock.
Here, regolith is defined as weathered and trans-
ported materials overlying intact bedrock (Jones
1985; Wilford et al. 2016).

Based on the foregoing background, our re-
search aimed to use both optical sensor and SAR
imagery data for increasing potential mapping
accuracy for groundwater resources in crystalline
basement rock and regolith areas in arid and semi-
arid regions. The surface backscattering coefficients
of SAR data from two microwave frequencies were
combined with vegetation and clay indices derived
from optical sensor, Sentinel-2 imagery, to assess the
weathering degree of crystalline basement rocks.
The proposed method is intended to discriminate
highly weathered zones in an efficient and cost-ef-
fective manner and enhance the success rate of
drilling to locate aquifers in areas without detailed
groundwater information. To the best of our
knowledge, this is the first study that successfully
combines optical sensor and SAR imagery data for
discriminating weathering degree and groundwater
potential mapping in basement aquifers of semiarid
regions.

GEOLOGICAL
AND HYDROGEOLOGICAL SETTINGS

The study area is located in the northeast of
Tete Province in central Mozambique, partially
covering the Angonia and Tsangano districts in the
west and south, respectively, from 14�27¢50¢¢S,
34�09¢30¢¢E to 14�53¢00¢¢S, 34�34¢30¢¢E. This area was
selected because it is typical of African semiarid
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land surfaces and geology and needs more ground-
water for irrigation and livestock farming. The study
area is approximately 2000 km2 and is characterized
by smooth plateaus and mountains with elevations
of 700–2000 m a.s.l. with some scattered inselbergs,
long valleys, and plains (Fig. 1).

This area is overlain by rocks of the Meso-
proterozoic and Neoproterozoic crystalline base-
ment complex. They are classified into two main
groups, the Ulongue Suite and Angonia Group
(Fig. 2). The Ulongue Suite consists of younger
plutons of the Dedza monzonite and related sye-
nitic rocks, the Metengo-Balame anorthosite
(hereinafter termed MBA), and the Tomo-Gimo
mafic gneiss rocks. The older plutons of the
Furancungo Suite, mainly the Desaranhama gran-
ites and related felsic rocks, partly cover the
southwestern corner of the study area. The
Angonia Group rocks are the oldest in the study
area and are chiefly composed of volcanic and
highly metamorphized rocks distributed discontin-
uously in a NW–SE direction. The Angonia Group
rocks with the smallest extent are quartzite and
marble units and those with the largest extent are
biotite–hornblende–quartz–feldspar banded gneiss
(hereinafter termed BBG) (CGS 2007).

The hydrogeology of the study area has been
studied only by DNA (1987) and Magaia et al.
(2018). A 1:1,000,000 scale hydrogeological map of
Mozambique (DNA 1987) depicts wide or narrow
distributions of aquifers ranked as limited produc-
tivity (< 5 m3/h) with low-to-very-low permeability
(C1) and areas of limited groundwater occurrence
(< 3 m3/h) with very low permeability (C2). One
noted feature is the development of fractured aqui-
fers in the MBA unit (B3), with moderate produc-
tivity (3–10 m3/h) and low permeability. The
mountainous zones are practically devoid of
groundwater because of their very-low-to-zero per-
meability (C3) (DNA 1987).

The climate of the study area is dry and tropi-
cal, and most of the precipitation falls in the period
between December and March. Based on meteoro-
logical station data from the Meteorology Institute
of Mozambique (INAM) in the Ulongue village in
the middle of the study area, the mean annual pre-
cipitation between 1965 and 1984 was 905 mm.
Mozambique has experienced long periods of
drought, which have caused serious damage to
agriculture and cattle farming and shortages of
drinking water across the country.

MATERIALS AND METHODS

Satellite Imagery and Preprocessing

For accurate estimation of weathering degree,
two microwave frequencies and dual polarization of
SAR data were used: one scene of Phased Array
type L band Synthetic Aperture Radar (PALSAR)
data onboard the Advanced Land Observing Satel-
lite (ALOS) launched in 2006 (Rosenqvist et al.
2007) and two scenes of C band data from Sentinel-
1A launched in 2014. The wavelength of L band
(23.6 cm) is longer than that of C band (5.6 cm). The
specifications of these SAR data are summarized in
Table 1. The spatiotemporal variability in the fea-
tures suggesting richness of groundwater and shal-
lowness of water level, such as soil moisture and
vegetation activity, was expected to be clarified by
the differences in the band and season of acquisition
date (dry or rainy) of the SAR data.

The selected PALSAR data supplied by the
Alaska Satellite Facility (ASF DAAC 2015) were
fully multi-looking images processed for noise
reduction. For the Sentinel data, multi-looking pro-
cessing and calibration and radiometric correction
were performed using the Sentinel�s Application
Platform (SNAP) toolbox (Laur et al. 2004), and
geometric correction was adopted using the range
Doppler geometric correction operator and the 3-arc
second SRTM DEM data (Small and Schubert
2008).

As optical sensor imagery, one scene of Sen-
tinel-2A level 1C, which was the best quality in the
dry season, was selected to map vegetation cover
and activity and to discriminate the development of
clay minerals in the regolith. Details of scene data
and specifications of the bands selected for our
analysis in terms of wavelength and spatial resolu-
tion are summarized in Tables 2 and 3, respectively.
Atmospheric, geometric, and cirrus corrections to
transform the original top-of-atmosphere level 1C
data to the bottom-of-atmosphere level 2A data
were implemented using the Sen2Cor processor in
the SNAP toolbox (Mueller-Wilm 2017) prior to the
computation of spectral indices.

Surface Backscattering Coefficient

In the active radar system, surface properties
are characterized indirectly through a parameter,
surface backscattering coefficient. This parameter is
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Figure 1. Location of the study area in the Tete Province, central western Mozambique, and its topography based on a gridded image of

digital elevation model (DEM) from the Shuttle Radar Topographic Mission (SRTM). The eastern side of the study area is contiguous to

Malawi as shown by the international border.
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calculated from the pixel value of SAR data as fol-
lows.

In a bi-static radar system, the backscattering
power received by a radar antenna ( Pr) from an
area A of the scattering on the Earth�s surface is
defined as (Rees 2001):

Pr ¼
k2G2Pt

4pð Þ3gR4
r0A ð1Þ

where k is wavelength of the microwave, g is antenna
efficiency, G ¼ 4pA=k2 is antenna gain, Pt is trans-
mitting power of the antenna, R is distance between
the antenna and scattering target on the Earth�s
surface, and r0 is the dimensionless surface

backscattering (dB). In general, r0 is a function of
the roughness and dielectric permittivity of surface
materials and varies with the incidence angle of the
radar beam (Engman 1991; Rees 2001).

The original ALOS PALSAR image data at
level-1.5 product are composed of a set of digital
numbers of the microwave amplitude (DNs) that are
16-bit unsigned short integers. The DNs are con-

verted into r0 by the following equation (Shimada
et al. 2009):

r0 ¼ 10 � log10 DNð Þ2þK ð2Þ

where K is calibration factor depending on the type
of polarization and data acquisition period. Its value
is � 83.2 or � 80.2 dB depending on the fine beam
dual mode, HH or HV, respectively. The DNs of

Sentinel-1A data can be converted to r0 by the
equation of Miranda and Meadows (2015); thus,

r0 ¼ 10 � log10
DN2

A2
dnK

� sin a
� �

; ð3ÞFigure 2. Simplified geological map of the study area digitized

from the 1:250,000 scale map (DNG 2006). This map is

overlaid on a shaded relief SRTM DEM and lineaments

extracted from multi-shaded SRTM DEM data (Magaia et al.

2018).

Table 1. Specifications of Phased Array type L band Synthetic Aperture Radar (PALSAR) and Sentinel-1A data used in this study

Acquisition date Season Band Wavelength

(cm)

Pixel

spacing (m)

Mode/

polarization

Off-nadir

angle (�)
Satellite/orbit

July 5, 2007 Dry L 23.6 12.5 9 12.5 FBD/HH and HV 34.3 ALOS/Ascending

January 3, 2015 Rainy C 5.6 10 9 10 IW/VV and VH 26–40.4 Sentinel-1A/Descending

September 13, 2017 Dry C 5.6 10 9 10 IW/VV and VH 26–40.4 Sentinel-1A/Descending

FBD and IW stand for fine beam dual and interferometric wide swath modes of acquisition, respectively
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where Adn is final scaling factor from the internal
slant range complex to the final 16-bit integer signed
for slant range complex and unsigned for ground
range detected, and a is local incidence angle.

Spectral Indices

Clay Index

Weathering can progress to great depths in
crystalline basement rock areas, and accordingly, the
permeability of aquifers formed in the basement
rocks is enhanced compared to the overlying regolith
(Jones 1985; Worthington et al. 2016). Because
weathering can generate clay minerals that have deep
absorption of reflectance in the shortwave infrared
region (SWIR) due to the content of hydroxyl and/or
water (Worthington et al. 2016; Rocchi et al. 2017), a
simple image processing band ratio can be used to
detect zones rich in clay minerals (Sabins 1999). The
clay index (CI), calculated simply by rationing two
SWIR band reflectances, qSWIR1=qSWIR2, has been a
common method for this purpose, in which SWIR1 is
a reference having large reflectance without absorp-
tion at 1.6 lm (band 11 of Sentinel-2A) and SWIR2 is

the absorbed reflectance, which is typically at 2.2 lm
(band 12) (Segal andMerin 1989; Sabins 1999; Ducart
et al. 2016). The performance of this band ratio is
degraded by the presence of vegetation cover because
vegetation has a similar SWIR reflectance spectrum
to clay minerals due to the abundance of water in
leaves (Okada et al. 1993; Ouerghemmi et al. 2016;
Bishop et al. 2017). Therefore, a large band ratio is
generated by richness of both clay minerals and veg-
etation (Okada et al. 1993; Ducart et al. 2016).

To overcome this mixture problem and separate
vegetated zones from clay-rich zones, the SWIR
band ratio is normalized by a simple vegetation in-
dex, qNIR=qRed (Jordan 1969) in which qRed and qNIR

are reflectances at visible red (band 4 of Sentinel-
2A) and narrow near infrared (band 8A), respec-
tively. This normalized ratio, termed modified clay
index (MCI), is formulated as:

MCI ¼ qSWIR1=qSWIR2

qNIR=qRed

¼ qb11 � qb4
qb12 � qb8A

; ð4Þ

where qb4, qb8A, qb11, and qb12 are reflectances of the
specified bands whose details are shown in Table 3.
MCI is expected to be a large value in conditions
with sparse vegetation and rich clay minerals with-
out suppressing reflectance from background soils.

Table 2. Specification of Sentinel-2A scene data for analysis of vegetation and clay indices

Acquisition date Season Processing level Sensing start time Cloud cover Orbit Tile number Relative orbit

September 26, 2017 Dry Level-1C 07:36:41 0% Descending 36LXJ 092

Table 3. Specification of Sentinel-2A spectral bands

Band number Band name Central wavelength (nm) Bandwidth (nm) Spatial resolution (m)

1 Coastal aerosol 443.9 27 60

2 Blue 496.6 98 10

3 Green 560.0 45 10

4 Red 664.5 38 10

5 Vegetation red edge 1 703.9 19 20

6 Vegetation red edge 2 740.2 18 20

7 Vegetation red edge 3 782.5 28 20

8 Near infrared 835.1 145 10

8A Narrow near infrared 864.8 33 20

9 Water vapor 945.0 26 60

10 Cirrus 1373.5 75 60

11 Shortwave infrared 1 1613.7 143 20

12 Shortwave infrared 2 2202.4 242 20

The italicized bands were used for spectral indices
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Vegetation Index

In arid and semiarid regions, vivid vegetation in
the dry season suggests occurrence of groundwater
at shallow depths. In addition to the clay index,
abundance of vegetation cover is assessed by a
vegetation index that can reduce the effect of re-
flectance from soils and increase the dynamic range
of the vegetation signal. For this, the modified soil-
adjusted vegetation index (MSAVI: Qi et al. 1994) is
selected.

MSAVI ¼
2qb8A þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qb8A þ 1ð Þ2�8 qb8A � qb4ð Þ

q
2

ð5Þ
The superiority of MSAVI over the simple band

ratio, qNIR=qRed, has been demonstrated for areas
with sparse vegetation (Qi et al. 1994; Rondeaux
et al. 1996; Matricardi et al. 2010; Petrakis et al.
2016), which is the case in the study area.

RESULTS AND DISCUSSION

Degree of Weathering from SAR Backscattering
Coefficients

The degree of rock weathering over the study

area was estimated from the r0 values of the ALOS
PALSAR HH and HV polarization mode images (

r0L HH and r0L HV in Fig. 3) and a Sentinel-1A VH

polarization mode image ( r0C VH in Fig. 4). The

subscripts L and C stand for the L and C bands,
respectively. Common to the co- and cross-polar-

ization ( r0L HH and r0L HV), the r0 of the dry season
tended to be large in the mountainous zones and

smaller mainly in the eastern flat zones. The large r0

also appeared locally in narrow strips in the small r0

zones. The fracture system in the study area was
characterized well by the lineaments extracted from
the multi-shaded SRTM DEM (Magaia et al. 2018).

By overlaying the lineaments on the r0L HH and

r0L HV maps, the r0L HV was seen to be more corre-

lated with the fracture zones than the r0L HH because

the thin strips with high r0L HV overlapped generally
with the lineaments, as shown in the insets of Fig-
ure 3. This correspondence probably originated
from strong volume scattering due to abundant
vegetation and high soil moisture content along the
fracture zones.

Similar to the r0L HV image, the large r0 zones

corresponded with the lineaments in the r0C VH

images from Sentinel-1A (Fig. 4), but this corre-
spondence became ambiguous in the rainy season

scene (Fig. 4a) in which the difference in r0 between
the lineaments and surrounding zones was smaller
than in the dry season scene (Fig. 4b: see the insets
for comparison).

Most lineaments were extracted from the valley
features composed of streams and rivers (Magaia

Figure 3. Surface backscattering coefficient images of a dry

season scene of ALOS PALSAR (L band) at (a) HH and (b)

HV polarization modes, and (c) shaded relief map of the

SRTM DEM. All are overlaid with the lineaments extracted

from multi-shaded SRTMDEM data (Magaia et al. 2018). The

insets show positional correspondence between the zones of

large surface backscattering coefficients and the lineaments.
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et al. 2018). The large r0 values in the valleys in both

the r0L HV and r0C VH images signified higher soil

moisture and/or the presence of higher vegetation
activity than the neighboring zones, because soil
moisture is retained selectively in tree canopies
along valleys in arid and semiarid regions (Yu et al.

2018). Large r0 values appeared also in the moun-
tainous zones where native vegetation was well
preserved and this dense vegetation retained mois-
ture. Owing to the abundance of moisture and veg-

etation, the dominance of volume scattering of
microwaves was common to the L and C bands.

Because the positional correspondence between

the large r0 zones and lineaments was best in the

r0L HV image due to the reduced effect of vegetation
canopy in the longer wavelength and the dry season
scene (as confirmed by the insets in Figs. 3 and 4),

the r0L HV image is discussed in detail later in this

paper. First, to define quantitatively large or small r0

values, the r0L HV values were classified into four
classes using the first, second, and third quartiles as
thresholds (Fig. 5a) and the resultant four classes
were compared with the natural color composite of
the Sentinel-2A image in the dry season (Fig. 5b).
The most noteworthy feature is that the distributions
of the MBA (35 km length and 8 km width) and the
BBG-M (BBG with metasedimentary origin, CGS

2007) matched the smallest r0L HV class, as shown in
the eastern zone, colored blue in Figure 5a. This
means that surface roughness in these areas is small
(i.e., smooth with sparse vegetation). The sparse
vegetation in these specific lithologic areas is con-
firmed by the bluish and brownish colors in the
composite image (Fig. 5b), except for the thin and

large r0L HV zones along the major lineaments and
streams, colored dark green.

To clarify the dependence of r0L HV on litho-

logic unit, the histograms of r0L HV values were
drawn per lithologic unit (Fig. 6). The resultant

histograms revealed that the r0L HV values in the
MBA and the BBG-M were biased toward small
values, as shown by the black and blue histograms,
and their means were the first two minima among
the 10 lithologic units. These features corresponded
with those that appear in Figure 5a. Conversely, the
four lithologic units situated in the southwestern
part, the Desaranhama granite porphyritic granite,
the Desaranhama granite gneiss, the actinolite schist
and amphibolite gneiss, and the equigranular tona-

litic, quartz-feldspathic gneiss, bore large r0L HV

values as shown by the light brown, brown, green,
and red histograms, respectively. The histograms of
the quartzite and marble are not shown because the
distribution of these units is very small in the study
area, as mentioned above.

The two units of small r0, MBA and BBG-M,
are weathered and are rich in clayey soils composed
of colluvium clayey and red clayey soils in the top
layer according to the 1:250,000 soil map from the
National Center of Cartography and Remote Sens-

Figure 4. Surface backscattering coefficient images from

Sentinel-1A (C band) at VH polarization mode from two

scenes of (a) rainy and (b) dry seasons, and (c) shaded relief

map of the SRTM DEM. All are overlaid with lineaments

from Magaia et al. (2018). The insets show positional

correspondence between the zones of large surface

backscattering coefficients and the lineaments.
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ing (CENACARTA). The former unit area is also
characterized by low relief topography and loamy
soils in the 1:250,000 geologic map by CGS (2007).
Backscattering intensity in such clayey soils de-
creases with small roughness due to the dominance
of specular reflection of microwaves (Hallikainen
et al. 1985; Gharechelou et al. 2015). Long-term
weathering smoothens rock surface by altering the
rock into fine clay minerals (McCauley et al. 1982;
Jones 1985; Dill 2016; Rocchi et al. 2017). These
surface lithologic and topographic conditions can

explain the small r0L HV values in the two units. The
degree of weathering is assessed in the next sub-
section from the viewpoint of clay richness in surface
soils.

Discrimination of Weathered Zones
and Assessment of Weathering Degree

To demonstrate the superiority of the proposed
MCI over the simple clay index, CI, the two indices
were applied to the Sentinel-2A images and the

resultant maps were classified into four classes using
the quartiles of their values (Fig. 7a and b), similar

to the r0L HV map of four classes (Fig. 5a). The clay
richness increased from red (poorest) to light red,
light blue, and blue (richest) classes in ascending
order. A notable difference was that large CI values
appeared in the mountain zones covered by thick
vegetation (Fig. 7a), whereas the MCI values were
small in these zones owing to limited soil reflectance
(Fig. 7b). Another noted feature was that the mixing
zones of vegetation and soil along the lineaments, in
which vegetation is dominant as explained in section
‘‘Degree of Weathering from SAR Backscattering
Coefficients’’ and shown in the MSAVI map below,
were classified into clay-rich classes by CI (Figs. 3, 4
and 7a). The vegetation richness appeared correctly
in the MCI map, as confirmed by the insets in Fig-
ure 7b.

To discriminate the weathered zones, the MCI
map was compared with MSAVI map that was also
classified into four classes by using the quartiles. The
vegetation richness and activity increased from red
(soils with sparse vegetation) to orange, light green,

Figure 5. Comparison between (a) four classes based on magnitude of surface backscattering coefficient of the

ALOS PALSAR image at HV mode and (b) natural color composition image from Sentinel-2A in which bands

4, 3, and 2 (see Table 3) were assigned to R, G, and B, respectively. Both images were derived from dry season

scenes. The delineated zones with the smallest class in (a) almost overlap with the distributions of the MBA and

the BBG-M. Vivid vegetation colored dark green in (b) is generally sparse in the whole area.
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and green (rich and active vegetation) classes in
ascending order (Fig. 7c). It is noteworthy that the

above two lithologic units with small r0L HV over-
lapped with the richest clay and poorest vegetation
classes. This correspondence supported our inter-

pretation of small r0L HV due to the strong weath-
ering and the resulting abundance of clay minerals.

Conversely, the poor clay classes colored in red
and light red (Fig. 7b) corresponded well to the rich
vegetation classes in green and light green (Fig. 7c).
This agreement was confirmed in the southwestern
and northeastern mountainous zones. Owing to the

volume scattering of vegetation, the r0L HV took

large values in these areas as the third and fourth
classes (Fig. 5a).

Superimposition of the lineaments on the two
spectral index maps highlighted that the lineaments
overlapped well with the narrow zones of the rich
vegetation classes (green and light green classes) and

the large r0L HV zones (as shown in the insets in
Figs. 3b and 7c). This confirmed that the lineaments
corresponded chiefly to fracture zones where most
groundwater was stored at shallow levels, as found
by Magaia et al. (2018).

Another noted feature was that two major
NNW-trending faults and several NNE- and NE-
trending inferred faults were distributed in the two

Figure 6. Histograms of surface backscattering coefficient values of the ALOS PALSAR image at

HV mode in the 10 main lithologic units. The means per unit are also shown.
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lithologic units with small r0L HV and rich clay con-
tent, and the units were located in the large density
zones of faults and lineaments (Fig. 8). The faults
are shear fractures with large vertical displacement,
but the lineaments originated from both shear frac-
tures and tensile fractures such as joints and fissures
that were limited in length, depth, and rock frag-
mentation. Rock fracturing by faults advances the
weathering of basement rocks more effectively and
strongly than tensile fractures (National Research
Council 1996; Owen et al. 2007; Singhal and Gupta
2010), and develops thick regolith with large poros-

ity and permeability (Chilton and Foster 1995).
However, such regolith contains many clay minerals,
such as kaolinite, that reduce permeability at shal-
low depths (Jones 1985; Chilton and Foster 1995;
Dill 2016). The faults and part of the lineaments
increase the permeability of the basement aquifers
below the surface clay layers.

Validation of Groundwater Potential Zones

Based on the above results, the high potential
for groundwater resources was estimated in the two
lithologic units (MBA and BBG-M) with small

r0L HV and the narrow zones of large r0L HV along the
lineaments with a large vegetation index. To verify
this estimation, a 1:1,000,000 hydraulic map pre-
pared by DNA (1987), the well survey data, and the
geophysical survey transient electromagnetic (TEM)
dataset from Magaia et al. (2018) were used. The
map classified the study area into four hydraulic
classes. Here, MBA and BBG-M were ranked as
relatively permeable classes, B3 for MBA and C1 for
BBG-M (Fig. 9). The permeability of the sedimen-
tary unit, BBG-S, having similar lithology to BBG-
M, varied with location, C1 in the northwest, C2 in
the south, and C3 in the northwest, middle and
southern mountain zones (Fig. 9).

Although rich vegetation was estimated for the
C2 and C3 zones from the large MSAVI values and

relatively large r0 values in both L and C band SAR
images, the groundwater potential of these zones
was ranked low. Their mountainous topography with
steep slopes, which induce high run-off from the

bFigure 7. Comparison of two maps produced by (a) the simple

clay index (CI) and (b) the modified clay index (MCI), which

were classified into four classes by the quartiles in which clay

richness increases from red (poorest) to light red, light blue,

and blue (richest) classes in ascending order. (c) Modified soil-

adjusted vegetation index (MSAVI) map, also classified into

four classes in which the red class is bare soil with sparse

vegetation and vegetation activity increases toward orange,

light green, and green (richest and active) classes. All maps are

overlaid with the lineaments, similar to Figures 3 and 4.

Positional correspondence between the lineaments and the

three spectral indices is verified in the insets. The zones along

the lineaments are relatively rich in vegetation, and therefore,

the clay index must be low and MSAVI must be high. White

ellipses outline the mountain zone covered by thick vegetation,

in which the clay index must also be low, to demonstrate the

superiority of MCI over CI. Locations of five TEM profiles

across the lineaments for resistivity cross sections are also

included.
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rains and prevent rain infiltration and development
of a thick weathering layer, is a plausible reason for
this low potential.

Another verification was tried for estimating
the weathered zone thickness and the groundwater
potential using existing data of well drilling depth
and potential yield (Fig. 10). In addition to strong
heterogeneities in the aquifer structures in the study
area, the difference in the season of drilling the wells
and the uncertainties in correctly determining the
potential yield might be reasons for the weak cor-
relation of the results with the verification data.
Nevertheless, the results can be used as general or
relative indicator of the thickness of the weathered

zone. The mean depth was 34 m, and the minimum
potential yield was 900 l/h. Therefore, the aquifers
targeted in the study area were the places that could
provide groundwater at least 900 l/h throughout the
year below about 34 m depth.

Three classes were set to each of the depth and
yield data: shallow (15.5–30 m), moderate (30.1–
37.3 m), and deep (37.4–56 m) classes and low (900–
1400 l/h), intermediate (1401–2400 l/h), and high
(2401–7000 l/h) yield classes using the tertiles of
value distribution (i.e., value intervals smaller than
the first, within the first to second, and larger than
the second tertiles). These classes were overlaid on
the hydraulic map (Fig. 9). Because no geologic data
were recorded and no well loggings were imple-
mented at all the well locations, the bottom depth of
regolith could not be accessed. However, the mean
well depth was close to the mean thickness of re-
golith, 27 m, measured by borehole surveys in the
regolith-rich aquifers in Malawi located near and
under similar geologic settings to this study area
(data from Table 2 in Wright 1992). The well bot-
toms in this study area were set in the fractured
zones above the intact rocks from which ground-
water can be pumped up efficiently. Therefore, the
depth range from the ground surface to the well
bottom can be regarded roughly as the thickness of
regolith.

The 15 wells in BBG-M, which was identified as

rich in clay by r0 and MCI, had a high ratio of
moderate and deep depth classes; 80% and 87% of
them were ranked as intermediate and high poten-
tial yield classes, respectively. Despite having similar
lithology as BBG-M, the BBG-S areas were ranked
as low hydraulic classes (C1 to C3) with moderate
clay content and sparse to moderate vegetation
activity, and 65% of the 54 wells in the areas were
moderate and deep depth classes, and 59% of wells
were intermediate and high potential yield classes.
These reductions in percentages were attributed to
poor development of the regolith because of the
smaller fault density in BBG-S. In addition to the
effect of fault fracturing, the difference in mineral
composition will determine the development of
weathering (e.g., Ehlen 2002; Worthington et al.
2016; Rocchi et al. 2017).

For another clay-rich unit, MBA, the verifica-
tion was difficult because there were only two re-
corded wells in it: a shallow depth (21 m) with low
potential yield (1050 l/h) and a moderate depth
(35 m) with high yield (4500 l/h). However, this unit

Figure 8. Density map of faults and lineaments highlighting

large density zones in and around the lithologic units MBA

and BBG-M with small r0L HV. The fault and lineament data

are from DNG (2006) and Magaia et al. (2018), respectively.

1208 Magaia, Koike, Goto, and Masoud



Figure 9. Hydraulic classes in the study area, modified from DNA (1987) overlaid on a SRTM

DEM shaded relief backdrop. The classes are B3 representing the highest permeability in the study

area that has well-fractured aquifers with the highest productivity (3–10 m3/h), C1 representing low

permeability that has continuous or discontinuous local aquifers with productivity limited to less

than 5 m3/h, C2 representing very low permeability with very limited groundwater occurrence

(< 3 m3/h), and C3 representing impermeable and devoid of groundwater occurrence, located

mainly in mountainous topography. Well depth and potential yield data were from the Water and

Sanitation Division of Tete Province (DAS-Tete). The fault data are from DNG (2006).
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was evaluated as the most permeable and productive
(B3) in the area. This feature must be attributable to
the highest fault density (Fig. 8) and the flat topog-

raphy of the unit as evidenced by the small r0.
To clarify the utility of r0L HV and MCI for

estimating weathering degree, a correlation of the

bottom well depth with r0L HV and MCI at the well
location was examined as shown in Figures 11 and
12. Two nonparametric tests, the Spearman ( rs) and
Kendall ( s) rank correlation coefficients, which
have been widely used for data distributions whose
normality is not verified in either or both the vari-
ables as in this study, were implemented to check the
statistical meaning of the association. The tests
showed that both correlations were weak (Table 4).
The correlation between the bottom well depth and

r0L HV was statistically nonsignificant because the
primary probability condition, p � 0:05, was not
satisfied in either test. The correlation between the
bottom well depth and MCI was statistically signifi-

cant. Although the correlations were weak, the
bottom depth (i.e., thickness of weathered zone)

tended to increase roughly with decreasing r0L HV

and increasing MCI. This general trend suggests that
the backscattering coefficient and clay index can be
related to weathering degree. For example, the
range of regolith thickness was roughly estimated
using the regression lines and the upper and lower
boundaries of the 75% and 95% prediction intervals.

The lack of correlation between bottom depth
and potential yield (Fig. 10) indicates that the re-
golith thickness is not the only factor controlling
groundwater occurrence. As mentioned above, fault
fracturing was probably one of the controlling fac-
tors. To confirm this inference, a scatterplot between
distance to nearest lineament from each well loca-
tion and potential yield was drawn (Fig. 13). Al-
though their correlation was very weak, similar to
Figures 11 and 12, the upper limit of potential yield
tended roughly to increase with proximity to linea-
ments. This trend can explain the high potential
yield in the shallow wells even in the limited
groundwater occurrence class C2 in Figure 9.
Therefore, the fracture zones that partially appeared
as lineaments in the study area can provide a field
for groundwater storage and preferential ground-
water flow through the development of weathering
and/or groundwater paths in the bedrocks. The other
control factors of potential yield that weaken the
correlations in Figures 11, 12, and 13 may be frac-
ture network and dike occurrence.

Moreover, the resistivity (q) distributions de-
rived by inversion analysis of the TEM dataset were
used for the third verification of the weathered zones

Figure 10. Relationship between well bottom depth and

potential yield of the groundwater wells shown in Figure 9.

Figure 11. Correlation between bottom well depth and ALOS

PALSAR backscattering coefficient at the HV mode ( r0L HV)

at the well locations. The regression line (the solid line) and

the upper and lower boundaries of the 75% and 95%

prediction intervals (blue and black dashed lines,

respectively) of the trend line are overlaid.

Figure 12. Correlation between bottom well depth and MCI

value at the well locations. The regression line (the solid line)

and the upper and lower boundaries of the 75% and 95%

prediction intervals (blue and black dashed lines, respectively)

of the trend line are overlaid.
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specified by r0L HV and MCI. Five TEM profiles over
the study area (Fig. 7) were selected as representa-

tive zones across the narrow strips of large r0, high
activity vegetation zone in widely small r0, clay-rich
zone. Four of the profiles were across the main axes
of MBA (profiles 1 and 2) with the hydraulic class
B3 and BBG-M (profiles 3 and 4) with C1. Profile 5
in BBG-S with C1 was to check a formation of
weathered zone in a rich vegetation zone outside the
two clay-rich zones. Four irregular and discontinu-
ous layers were discriminated by the q values
(Fig. 14).

Layer I is formed near the surface in all the
profiles due to the formation of clay minerals by
intense weathering and overlies thick layer III in
general near the fracture zones. Layer II intercalates
with layer III and becomes more noticeable at both
ends of every profile. An effect of lineaments on the
groundwater storage by increasing permeability of
the underlying rocks is well marked in profiles 1, 3, 4,
and 5, because layer III is distributed extensively
and thickly around the fracture zones. In the zones
around them, MSAVI and MCI values become high
and low, respectively, because of active vegetation.
Although layer I tends to be thick toward the lin-

eament in profile 2, layer III appears apart from the
lineament. This is a case of non-correlation of the
main weathered layer with the lineaments.

The five profiles revealed variability in thick-
ness and location of the main weathered layer (layer
III). However, it tends to be thick toward the lin-

eaments in the middle profiles where the r0 values
become large due to the active vegetation. The in-
tense weathering along the lineaments must cause
much groundwater storage, and consequently, the
wells with large potential yield are located generally
near the lineaments as shown in Figure 13.

CONCLUSIONS

This study aimed to develop a remote sensing-
based potential mapping of groundwater resources
in crystalline rock areas in a semiarid region through
a combination of surface backscattering coefficients
of L and C band SAR images (ALOS PALSAR and
Sentinel-1A images, respectively) and two spectral
indices, clay and vegetation, derived from an optical
sensor image (Sentinel-2A image). The degree of
weathering in a regolith-rich area in central
Mozambique was estimated by the combination
because advanced weathering can form an excellent
aquifer with large porosity and permeability. Two
types of high potential zones were clarified. The first
type comprised zones of high weathering degree
with high density of faults and lineaments, which
were characterized by small surface backscattering
coefficients (i.e., having smooth Earth surface and
being rich in clay minerals owing to advanced
weathering). The second type comprised narrow
zones along lineaments where surface backscattering
coefficients of the cross-polarized images were large
in both the L and C band images. From these ima-
ges, high vegetation vigor that induces large volume
scattering throughout the year was inferred. Using
data from 118 groundwater wells on bottom depth

Table 4. Results of Spearman and Kendall rank tests to check the statistical significance of the correlations of the bottom well depth with

the surface backscattering coefficient and modified clay index

Variables Distribution Spearman Kendall

rs p s p

Drilled depth and r0L HV Tailed and normal � 0.11 0.25 � 0.08 0.22

Drilled depth and MCI Tailed and tailed 0.24 0.008 0.16 0.009

Types of the underlying variable distributions are also shown

Figure 13. Relationship between distance to the nearest

lineament from each well location and the potential yield.

The dashed curve stands for the approximate upper limit of

the potential yield.
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Figure 14. Cross sections of TEM resistivity produced by an inversion analysis of the TEM dataset by Magaia

et al. (2018), along profiles 1 and 2 in MBA, profiles 3 and 4 in BBG-M, and profile 5 in BBG-S. The resistivities

were classified into four value ranges (I to IV layer): I, a top layer of alternating sediments with low to moderate

q (4–12 Xm); II, fractured, less weathered, and highly resistive layer with low porosity (q ‡ 400 Xm); III,

fractured and weathered layer with high potential of groundwater storage (q = 10–300 Xm); and IV, located at

the bottom of profiles (q £ 10 Xm) with low q resulting from accumulation of clay mineral, iron oxides, and/or

graphite in deep zones (Magaia et al. 2018). PFP stands for possible fracture position inferred from the lineament

data by Magaia et al. (2018). Profile locations are shown in Figure 7.
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and potential yield, we demonstrated the plausibility
of the two types of groundwater occurrence as fol-
lows. The bottom depth was considered to be related
to thickness of weathered zone based on the general
pumping style in the study area. Overall, the
potential yields tended to increase as the wells ap-
proached the lineaments for the second type, and
the bottom depths were likely to increase with
decreasing backscattering coefficients and increasing
clay index values for the first type.

Consequently, the effectiveness of the above
combination was demonstrated for remote sensing-
based mapping of groundwater potential in semiarid
regions without detailed water investigation data as
a first-pass approach before detailed surface geo-
physical surveys. More advanced SAR data analysis,
spectral analyses for clay and vegetation abun-
dances, and detection of fracture-related topo-
graphic features are our next study aims. We will use
these proposed techniques to enhance the estima-

tion accuracy of weathering degree and regolith
thickness, and the reliability of groundwater poten-
tial mapping in an efficient and cost-effective way.
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