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ABSTRACT

The magnetotelluric (MT) method has been used for visual-
izing subsurface resistivity structures and more recently for
monitoring resistivity changes. However, electromagnetic data
often include cultural noise, which can cause errors in the es-
timation of MT response functions and subsurface resistivity
structure analysis. Frequency-domain independent component
analysis (FDICA) offers advantages for MT data processing par-
ticularly because this method can extract hidden components in
the observed data. These components can be decomposed into
natural MT signals and cultural noise so that the noise effect in

the recovered MT data is reduced. FDICA is applied to MT data
acquired at the Kakioka Magnetic Observatory in Japan. The
apparent resistivity and phase curves are obtained with small
estimated errors between periods of 7 and 12,000 s, although the
length of the time-series data is limited. The curves are smoother
than those obtained using a conventional method. Various types
of synthetic noise are added to the time series at Kakioka to test
the noise-reduction performance of FDICA for MT data with
high noise contamination. The results demonstrate that FDICA
can be used to estimate MT response functions with high accu-
racy even under conditions in which more than half of the time-
series data are contaminated by noise.

INTRODUCTION

Magnetotellurics (MT) is an electromagnetic (EM) exploration
method that can visualize deep subsurface resistivity structures.
Time-lapse MT sounding has recently been conducted to monitor
the subsurface resistivity structure around volcanic regions as poten-
tial geothermal energy sources (Aizawa et al., 2011; Peacock et al.,
2013) and gas reservoirs (He et al., 2015; Rees et al., 2016).
The temporal changes in apparent resistivity and phase (MT response
functions) are generally small (e.g., 20% of the apparent
resistivity changes reported by Aizawa et al., 2011). However, the
accuracy of MT measurements is often degraded by artificial (cul-
tural) noise mixed in the electric and magnetic data (referred to as
MT data in this study). Cultural noise from power lines, direct cur-
rent (DC) electric railways, sensor vibration, and other sources can
cause large errors in the estimated response functions (Szarka, 1988;

Junge, 1996). The detection of temporal changes is therefore difficult
if the degree of changes is within the range of the estimated errors.
Substantial research efforts have addressed the processing of MT

data contaminated by cultural noise. Vozoff (1972) proposes a sim-
ple stacking of spectra, and Gamble et al. (1979a) develop remote-
reference processing to reduce the bias on MT responses owing to
local noise. Combined robust estimation and remote-reference
processing (Egbert and Booker, 1986; Chave et al., 1987) were then
proposed as well as a modified method involving a bound on the
influence of the magnetic field (Chave and Thomson, 2004). Robust
remote references with principle component analysis have also
been reported for MT array data (Egbert, 1997; Egbert, 2002;
Smirnov and Egbert, 2012) and can offer more robustness to
noisy data than the previous methods when array data are available.
Other approaches have also been presented in the literature:
Weckmann et al. (2005) derive a manual scheme to find and mask
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noise spectra, Neukirch and Garcia (2014) propose a method to
handle nonstationary noise, and Chave (2017) builds a new statis-
tical model for the estimation of MT responses. These methods have
been widely used and can be applied to obtain highly accurate MT
response estimates. However, cases in which cultural noise still con-
taminates substantial portions of the time series may result in a very
low signal-to-noise (S/N) ratio of the data and possibly low-quality
MT responses.
Time-domain independent component analysis (TDICA) has

been recently applied to extract signals in various geophysical
fields (Ikelle, 2007; Tsuno and Iwata, 2015; Imamura et al.,
2017; Sato et al., 2017). This method was originally developed
to decompose observed multichannel data (e.g., audio data) into in-
dependent and separated components (Hyvärinen et al., 2001). The
application of TDICA to decompose MT signals and noise from
observed data has also been proposed (Cui et al., 2013; Mizunaga,
2016). In the time domain, however, phase differences between the
electric and magnetic fields owing to induction phenomena must be
considered. The performance of TDICA degrades when processing
MT data because they require no phase shift in the observed data
(Hyvärinen et al., 2001). To overcome this problem, we use the
method of frequency-domain independent component analysis
(FDICA), which was originally introduced by Smaragdis (1998)
for blind source separation. FDICA extends TDICA to the complex
domain, which is applicable to the temporal changes of complex
spectra. FDICA accommodates data with phase differences in
the time domain, such as MT data. However, some challenges
remain when applying conventional FDICA to MT data, as dis-
cussed later. To lessen these problems, we attach four processes
and develop a new processing code for MT data using FDICA
(i.e., an MT processing scheme based on FDICA, or shortened
as FDICA-MT) to reduce cultural noise that contaminates substan-
tial portions of the local time series.
In this work, the performance of FDICA-MT is tested on data

acquired at the Kakioka Magnetic Observatory, Japan. The results
are compared with the popular tool bounded influence remote refer-
ence processing (BIRRP) (Chave and Thomson, 2004) to verify the
accuracy and reliability of FDICA-MT. We illustrate the noise-
reduction performance of FDICA-MT by adding various levels
of synthetic noise to the raw data, and impedances are successfully
recovered even under considerable noise contamination. We use the
term “source signals” in the mathematical introduction of FDICA,
which means unmixed/original components (e.g., MT signals and
noise), and the terms “MT signals” and “noise” directly to discuss
the detailed FDICA-MT processes.

FDICA

Theory of FDICA

FDICA was originally introduced by Smaragdis (1998) to de-
compose observed data into separated components in the time-
frequency domain after applying the short-time Fourier transform
(STFT). Consider that FDICA is applied to the observed data
with four channels. The observed data Xðf; τÞ ¼ fX1ðf; τÞ; : : : ;
X4ðf; τÞgtr, which is a transpose matrix of fX1ðf; τÞ; : : : ; X4ðf; τÞg
at a frequency f and with T time windows ðτ ¼ 1; : : : ; TÞ, are as-
sumed to be linear combinations of four independent source signals
Sðf; τÞ ¼ fS1ðf; τÞ; : : : ; S4ðf; τÞgtr. If the total number of source
signals is equal to the number of observed data (i.e., four), the fol-

lowing equation can be expressed with a mixing matrix AðfÞ (4 × 4

matrix):

Xðf; τÞ ¼ AðfÞSðf; τÞ: (1)

Using FDICA, separated components Yðf; τÞ ¼ fY1ðf; τÞ; : : : ;
Y4ðf; τÞgtr are obtainable at each frequency and for each time
window. The separation matrix WðfÞ is also obtainable at each
frequency:

Yðf; τÞ ¼ WðfÞXðf; τÞ: (2)

Each separated component is an estimated source signal, and the
inverse separation matrix W−1 is an estimated mixing matrix A and
denotes the contributions of each Y to X. However, the separated
components do not always have the same index number as the cor-
responding source signals. For example, Y1 does not always corre-
spond to S1, but it may, for instance, correspond to S2 instead.
Additionally, separated components Y do not always have the same
phases and powers as S. The correspondence between the separated
components and the source signals and recovery of phases and
powers must be determined based on W−1ðfÞ.
Two conditions are required for extracting Y with high accuracy:

Source signals must be mutually independent, and the source sig-
nals’ distributions must not be Gaussian. When several source sig-
nals S mix, the observed data X follow a Gaussian distribution by
the central limit theorem, so we assume in FDICA that S (i.e., before
mixing) follows a non-Gaussian distribution (Amari et al., 1996;
Hyvärinen and Oja, 2000; Hyvärinen et al., 2001).
Let us consider that the observed data are MT data and the source

signals correspond to two polarized MT signals and noise compo-
nents. As reported in Vörös et al. (1998), the empirical probability
density function (PDF) of MT signals (i.e., the geomagnetic fluc-
tuations) frequently has a long tail, which is not easily modeled by a
Gaussian distribution. Cultural noise also often has large ampli-
tudes, which implies that its PDF also has a long tail. We thus model
the separated components corresponding to source signals (i.e., MT
signals and noise) by a Laplace distribution because it has a longer
tail than a Gaussian distribution.
Following conventional FDICA (Murata and Ikeda, 1998), we

use “mutual information” as an indicator of statistical independ-
ence, a measure of the information that members of a set of random
variables have on other random variables in the set and is defined by
equation 5.17 in Hyvärinen et al. (2001). In FDICA based on mu-
tual information, the separation matrix WðfÞ can be optimized to
satisfy the independence between each pair of separated compo-
nents following the algorithm by Murata and Ikeda (1998; equa-
tion 9):

Wtþ1ðfÞ ¼ WtðfÞ þ αðdiag½EV½φðYðf; τÞÞYðf; τÞH��
− EV½φðYðf; τÞÞYðf; τÞH�ÞWtðfÞ;

(3)

where EV denotes the expected value, superscript H represents the
Hermitian transpose of Yðf; τÞ, and t indicates the current iteration.
Additionally, φðYÞ represents the activation function defined as
φðYÞ ¼ tanhðη · RefYgÞ þ j · tanhðη · ImfYgÞ, where j denotes
the imaginary unit and can be obtained by modeling Y as a Laplace
distribution according to Murata and Ikeda (1998) and Hyvärinen

E22 Sato et al.
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et al. (2001). We use η ¼ 100 following Mukai et al. (2003) and
Sawada et al. (2003) to stabilize the gradient defined by the acti-
vation function φðYÞ. In equation 3, α is a step coefficient related
to the convergence speed of the iteration and has a value of 0.1 be-
cause Mukai et al. (2003) and Sawada et al. (2004) demonstrate the
stability of convergence with such a value. The initial value ofWðfÞ
is set as the identity matrix because its convergence is faster than set
as a random matrix (Tachibana et al., 2007).
When handling small amplitude data, the gradient defined by the

second term on the right side of equation 3 can become unstable
because φðYÞ approaches zero. To prevent this, the scale of the ob-
served data Xðf; τÞ should be normalized. We multiply Xðf; τÞ by
the scaling matrixQðfÞ, which denotes the reciprocal of the average
power of squared spectra, before applying FDICA:

QðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag

�
TP

τ Xðf; τÞXðf; τÞH
�s
; (4)

where T is the total number of time windows, as mentioned above.
Our study defines the inverse separation matrix including QðfÞ as

BðfÞ ¼ ðWðfÞQðfÞÞ−1: (5)

Example of blind source separation with conventional
FDICA

A simple example of conventional FDICA processing is por-
trayed in Figure 1, which demonstrates how conventional FDICA
can extract separated components from only the observed data. Two
source signals (Figure 1a), which are combinations of random noise
and small rectangular waves with a length of 12,736 s, are assumed
to be independent in the time domain. The number of observed data
is also assumed to be two (Figure 1b), which are composed of two
source signals with phase differences of 1 s and mixing matrix

A ¼
�

1 0.5

0.5 −1

�
. After applying FDICAwith a Fourier transform

length of 128, 256, and 512 s, and processing by inverse STFT, we
decompose the data into two separated components (the right two
graphs in Figure 1). In the time domain, two independent compo-
nents are extracted: Separated component 1 corresponds to source
signal 1, and separated component 2 corresponds to source signal 2,
although the sign is reversed. However, the source signals’ ampli-
tudes, signs, or phases recorded in the observed
data can be reconstructed using the inverse sep-
aration matrix BðfÞ in equation 5 because it
denotes the contributions of the separated com-
ponents to the observed data.

Performance of conventional FDICA
under some inherent noise

Conventional FDICA requires that the total
number of source-signal components is the same
as the number of observed components. How-
ever, this assumption might not hold for actual
MT observations. For example, the time-series
data at an MT site may be contaminated by
several cultural noise sources such as power

generators, factories, and DC railways. Sawada et al. (2006) report
that FDICA can estimate only large source signals from the ob-
served data, including several source signals in such cases.
By focusing on a frequency f, we confirm the ability of signal

extraction by FDICA based on eight signals mixed as0
BB@

X1ðf; τÞ
X2ðf; τÞ
X3ðf; τÞ
X4ðf; τÞ

1
CCA ¼

�
I2 I2
0 I2

�0BB@
Nxðf; τÞ
Nyðf; τÞ
Sxðf; τÞ
Syðf; τÞ

1
CCA

þ aI4

0
BB@

N1ðf; τÞ
N2ðf; τÞ
N3ðf; τÞ
N4ðf; τÞ

1
CCA; (6)

where IK is the identity matrix (K × K matrix) and X1; : : : ; X4 are
four observed data. The terms Sx, Sy, Nx, and Ny are four synthetic
independent source signals, which are spectra based on rectangular
waves in the time-frequency domain, are normalized, and have 80
time windows. In a more realistic case, Sx and Sy can be considered
as natural MT signals that randomly fluctuate and Nx and Ny cor-
respond to cultural noise components. Additionally, N1; : : : ; N4 are
considered random-Gaussian inherent noise components, which
create an undesired condition for FDICA.
By varying the inherent noise coefficient (a) from 0 to 1, we ap-

ply FDICA to the four observed data and extract the separated com-
ponents and inverse separation matrix B (equation 5). We can
estimate the reciprocal S/N of Xiði ¼ 3; 4Þ using

EstNSðXiðf; τÞÞ ¼
P jBnoise inXi

jP jBsignal inXi
j ; (7)

where Bnoise inXi
and Bsignal inXi

are elements of B and denote the
contribution of the noise components to Xi and those of the MT
signal components, respectively. Therefore, the ratio of the summa-
tion of jBnoise inXi

j over that of jBsignal inXi
j denotes the reciprocal

S/N of Xi based on the FDICA results. Because no noise is included
in X3 and X4, EstNS originally indicates zero. If the inherent noise
becomes large, then EstNS increases owing to the substantial deg-
radation of the separation performance. Additionally, considering
X3 and X4 as inputs and X1 and X2 as outputs, we define here the
simple response function (SRF) as

Figure 1. Example of FDICA processing. (a) Two independent source signals in the
time domain. (b) Observed data with two channels with phase shifting. (c) Two sepa-
rated components obtained from FDICA.

Noise reduction of MT data using FDICA E23
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SRFðfÞ ¼ 1

2

�P jBsignal inX1
jP jBsignal inX3
j þ

P jBsignal inX2
jP jBsignal inX4
j
�
: (8)

SRF indicates an initial value of one because of equation 6, and it
changes when the inherent noise is included in the signal compo-
nents. After 10,000 trials with randomization, the average EstNS and
SRF are calculated, as presented in Table 1. The results show that
the SRF deviates largely from one when the EstNS surpasses 0.1–0.2
(i.e., a > 0.2–0.5). As shown in Table 1 and reported in Sawada
et al. (2006), we can extract the natural MT signals and large noise
exactly using FDICA if the additional inherent noise has small am-
plitudes.

MT PROCESSING SCHEME BASED ON FDICA
(FDICA-MT)

Using FDICA, we fundamentally decompose the four observed
components as (1) two horizontal magnetic-field and electric-field
data, (2) two electric-field and two reference data, or (3) two hori-
zontal magnetic-field and two reference data. FDICA enables de-
composition of the observed data into two-polarized MT signals
and two unknown cultural noise components under the condition
that the sources of the two-polarized signals (e.g., the north–south
and east–west directions) and the sources of the two noise compo-
nents are independent and follow Laplace distributions. Although
Chave (2017) shows that MT data are systematically long-tailed
and can be described by a stable distribution family, FDICA has
only as yet been specifically defined for the long-tailed Laplace
distribution, as mentioned previously. However, the critical point
is that FDICA optimizes the signal non-Gaussianity, which is a
common characteristic between the two distributions. Two noise
factors may be correlated accidentally because of large-amplitude
cultural noise during the daytime. In this case, FDICA estimates
only EM signals exactly if the independence between EM signals
and noise holds.
Conventional FDICA involves two important difficulties for MT

data analysis: (1) It is difficult to determine whether the separated
components represent MT signals or noise (a “permutation prob-
lem”) and (2) the signal-separation performance of FDICA is im-
perfect (“limited ability of signal separation”). For the first problem,
we must distinguish the correspondence of each separated compo-
nent to one source signal at each frequency. As shown in Figure 1,
matching of the true source signals and separated components is not
achieved. The second problem is caused by a severe noise environ-
ment, where most of the time-series MT data are contaminated by
cultural noise. The noise’s waveform can spuriously correlate with
the MT signals’waveforms, although their sources are independent.
Moreover, as shown in Table 1 and Sawada et al. (2006), if the total

number of MT signals and cultural/inherent noise components is
larger than four, the estimation of the separated components de-
grades. We therefore present solutions to the permutation problem
and the limited ability of signal separation. We use the S/N of local
magnetic-field data to provide a solution to the permutation prob-
lem. Subsequently, we propose a solution to the limited ability of
signal separation in which we select data sections with small inher-
ent noise determined by FDICA at each frequency.
This study develops a new scheme for MT analysis, improving

the conventional FDICA, and it proposes an outline of FDICA-MT.
Cores of the algorithm designated as FDICA-MTare summarized in
Figure 2, where the processes of PA, PB, PC, and PD are newly
proposed in this study. The observed data are transformed by STFT
using a Hamming window. The entire time-dependent spectra are
divided into L data sections. For example, Exðf; τÞ is divided into
Exðf; l; τlÞ; ðl ¼ 1; : : : ; L and τl ¼ 1; : : : ; TLÞ, where TL ¼ T∕L.
We define the number of data sections L satisfying the condition
that each section length TL is longer than 100 to avoid very short
data lengths, which possibly cause the accidental correlation of
independent waveforms. In the case of analysis of a long period,
L should be small due to the limited time-series data and longer
Fourier transform length. We derive the separated components
Yðf; l; τlÞ and inverse separation matrix Bðf; lÞ at each frequency
f and each data section l.

S/N ratio estimation of local magnetic-field data

As important parameters in our algorithm (PA in Figure 2), we
propose minimum values of the S/N of local magnetic-field data:
mSNðd; f; lÞ for d component ðd ¼ x; yÞ. Here, we focus on the
x-direction of the magnetic field at one frequency in one data section
and omit its section ID ðlÞ. Using the Gram-Schmidt orthonormal-
ization, the time-dependent complex spectra of local magnetic-
field data HxðfÞ ¼ fHxðf; 1Þ; : : : ; Hxðf; TÞgtr, which is a vector
notation of Hxðf; τÞðτ ¼ 1; : : : ; TÞ, can be decomposed into a
correlated part with the reference magnetic-field data RxðfÞ ¼
fRxðf; 1Þ; : : : ; Rxðf; TÞgtr and an uncorrelated part:

HxðfÞ ¼
�hR�

xðfÞ;HxðfÞi
hR�

xðfÞ;RxðfÞi
RxðfÞ

�

þ
�
HxðfÞ −

hR�
xðfÞ;HxðfÞi

hR�
xðfÞ;RxðfÞi

RxðfÞ
�
: (9)

Here, superscript � indicates the conjugate vector of Rx and
“ hR�

x;Hxi” denotes the inner product of R�
x and Hx. The first term

on the right side of equation 9 is the correlated part of Hx with Rx,
and the second is the uncorrelated part. Reference data used in
FDICA-MT are assumed to include no noise that correlates with

Table 1. The summation of EstNS in equation 7 and SRF in equation 8.

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EstNSðX3Þ 0.01 0.04 0.09 0.14 0.20 0.25 0.30 0.33 0.36 0.39 0.41

EstNSðX4Þ 0.01 0.04 0.09 0.14 0.20 0.25 0.30 0.33 0.37 0.39 0.41

SRF 0.97 0.99 0.97 0.95 0.92 0.89 0.85 0.79 0.74 0.69 0.66

Note: The row labeled “a” indicates the amplitudes of the inherent noise.
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the local noise. Dividing the Euclidean norm of the correlated part
in equation 9 by that of the uncorrelated part, we obtain mSNðx; fÞ
defined as

mSNðx; fÞ ¼

���� hR�
xðfÞ;HxðfÞi

hR�
xðfÞ;RxðfÞi RxðfÞ

��������HxðfÞ − hR�
xðfÞ;HxðfÞi

hR�
xðfÞ;RxðfÞi RxðfÞ

����
; (10)

which is smaller than the squared “true” S/N of Hx as described in
Appendix A. Although it is not realistic, mSNðx; fÞ is equal to the
true S/N when the noise at the reference site is zero. Nevertheless,
we ascertain that mSNðx; fÞ and mSNðy; fÞ represent the minimum
values of S/N of the local magnetic-field data.

Determination of MT signals and noise
from separated components

Here, we focus on one data section, omit its
section ID (l), and focus on a frequency f. If
mSNðx; fÞ ≥ 1 and mSNðy; fÞ ≥ 1, the local
MT data are decomposed into four separated
components using FDICA. When the number
of MT signals is limited to two as reported in
Egbert (2002), the two polarized signals may
be determined based on the maximum contribu-
tion to the magnetic field data.
However, Sawada et al. (2006) and Hiroe

(2009) report that one or more meaningless sep-
arated components can be generated when the to-
tal number of MT signals and noise components
(aside from small or inherent noise) is less than
four. Because such components include MT
signals or noise components due to the limited
ability of signal separation, as discussed later,
it might be more appropriate that one signal or
noise component is represented by two or more
separated components. To accommodate this
case, the determination is based on the inverse
separation matrix BðfÞ in equation 5 by the
evaluation of mSNðx; fÞ and mSNðy; fÞ (PB1 in
Figure 2). For example, we consider that the MT
signal components derived from the x-direction
magnetic field are determined. We then search
all B3kðfÞ that satisfy

jB3kðfÞj ≥
1

λmin

max
k

jB3kðfÞj

× ðλmax > mSNðx; fÞ ≥ λminÞ: (11)

All Ykðk ¼ 1; : : : ; 4Þ corresponding to B3kðfÞ
that satisfy equation 11 are considered as MT
signal components. The function maxkB3kðfÞ
denotes the maximum value in the contribu-
tion of the separated components Ykðf; τÞ to the
x-direction magnetic-field data. The two varia-
bles λmax and λmin are thresholds for distinguish-
ing the MT signal and noise components and are
set by three steps: (1) ðλmax; λminÞ ¼ ðþ∞; 10Þ,

(2) ðλmax; λminÞ ¼ ð10; ffiffiffiffiffi
10

p Þ, and (3) ðλmax; λminÞ ¼ ð ffiffiffiffiffi
10

p
; 1Þ.

The relationship between the mSN (or the true S/N) and FDICA re-
sults (i.e., B) cannot be derived exactly because it depends on the
data conditions. Thus, from the experience of our numerical tests in
changing the true S/N and deriving mSN, we set the pairs of thresh-
olds ðλmax; λminÞ in equation 11 as above, although they can be set
differently by other users. The reason for a stepped threshold rather
than a continuous threshold is explained in Appendix B. To deter-
mine the MT signal components corresponding to the y-direction
magnetic field, B3kðfÞ and mSNðx; fÞ are replaced by B4kðfÞ and
mSNðy; fÞ. The other separated components are regarded as noise
components.
At a frequency where mSNðx; fÞ < 1 or mSNðy; fÞ < 1, we cannot

reliably consider the separated components with high contributions
to the local data as MT signals (i.e., the MT signals cannot be de-
termined following equation 11). In such a case, FDICA is applied

Figure 2. FDICA-MT analysis flow. The symbols EstNS, mSN, and U are defined
by equations 7, 10, and 13, respectively. The processes in bold are newly adopted
to conventional FDICA.
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to the two local magnetic-field data and two reference data (see the
upper “decision” symbol in Figure 2) assuming that the reference
data have sufficiently high S/Ns and there exist two polarized sig-
nals, as reported in Egbert (2002). Let us consider that Hx, Hy, Rx,
and Ry are the magnetic-field data at the local and reference sites, Sx
and Sy are the natural MT signals, Nx and Ny represent the local
noise, TL and TR denote the mixing matrix of the MT signals, and
An represents the mixing matrix of the noise. The ideal condition of
the local and reference data can be represented as0
BB@

Hxðf; τÞ
Hyð; τÞ
Rxðf; τÞ
Ryðf; τÞ

1
CCA ¼

�
AnðfÞ TLðfÞ
0 TRðfÞ

�0BB@
Nxðf; τÞ
Nyðf; τÞ
Sxðf; τÞ
Syðf; τÞ

1
CCA: (12)

Based on equation 12, only two separated components with a maxi-
mum value in the contribution to the reference data are then re-
garded as MT signals (PB2 in Figure 2).

Selection of data sections with small inherent noise

For a good signal-separation performance of FDICA, we propose
a method to select the data sections with small inherent noise (PC in
Figure 2). At a data section or frequency with mSNðx; f; lÞ ≥ 1 and
mSNðy; f; lÞ ≥ 1, after the signal determination based on equa-
tion 11, we can estimate the reciprocal of S/N (i.e., N/S) of mag-
netic-field data using EstNS in equation 7, whose Xk is replaced by
Hxoryðf; lÞ. Although mSN is only dependent on S/N, EstNS is de-
pendent on S/N and the signal-separation performance of FDICA.
We therefore assume that each reciprocal of EstNSðHxðf; lÞÞ and
EstNSðHyðf; lÞÞ should be far from mSNðx; f; lÞ and mSNðy; f; lÞ
in the presence of large inherent noise when the signal separation
degrades. The product of EstNS and mSN,

Uðd; f; lÞ ¼ EstNSðHdðf; lÞÞ · mSNðd; f; lÞðd ¼ x; yÞ; (13)

indicates the signal-separation performance and is used to identify
data sections with small inherent noise. We assume the data sec-
tions, where each Uðx; f; lÞ and Uðy; f; lÞ has a value larger than
a threshold, to be less contaminated by inherent noise. Because
U in equation 13 can become small by the bias effect ofmSN, setting
a large threshold would possibly lead to the rejection of many data
sections in which FDICA works well. We set a small threshold be-
tween 0.06 and 0.10, and we tested various values and obtained
stable results within this range. Although this value can be set
by users, in real data analysis, we recommend a threshold of 0.1.
Furthermore, we assume that the data withmSN higher than

ffiffiffiffiffi
10

p
are

less contaminated and Uðd; f; lÞ is derived only if any mSNðd; f; lÞ
is between 1 and

ffiffiffiffiffi
10

p
.

At a data section or frequency with mSNðx; f; lÞ < 1 or
mSNðy; f; lÞ < 1, after applying FDICA to the two local mag-
netic-field data and two reference data, we evaluate the signal-
separation performance at each section using EstNS in equation 7,
whose Xk is replaced by Rxðf; lÞ or Ryðf; lÞ (see PC at the top right
in the flowchart, Figure 2). The EstNSðRxðf; lÞÞ and EstNSðRyðf; lÞÞ
indicate zeros under no inherent noise conditions in the reference
data because the latter are assumed to include no noise that corre-
lates to local noise. According to the results in Table 1, EstNS should
not exceed 0.1–0.2. In real data analysis, data sections with EstNS

values less than 0.1 are regarded to contain a sufficiently strong
signal (i.e., low inherent noise) and are further considered.
After selecting the data sections with small inherent noise, these

divided sections are combined intoHxðf; τÞ,Hyðf; τÞ, Exðf; τÞ, and
Eyðf; τÞ, where τ is renumbered from 1 to TsðfÞ (TsðfÞ is the total
number of spectra in the selected data sections at a frequency f). As
a result, we can obtain the temporal changes of complex spectra that
are less affected by inherent noise that cannot be extracted using
FDICA. However, large coherent noise might remain in the tempo-
ral changes of complex spectra, which may still be removed us-
ing FDICA.

Removal of remaining noise from the MT data

We recalculate mSN from the above obtained MT spectra. We
then propose two analytical flows in the cases of (1) mSNðx; fÞ
and mSNðy; fÞ ≥ 1 and (2) mSNðx; fÞ or mSNðy; fÞ < 1 (the lower
decision symbol in the flowchart, Figure 2).
When both mSN are equal to or greater than one, FDICA is ap-

plied to the four local MT data and the four separated components
can be obtained. Following equation 11, the four separated compo-
nents are assigned to natural MT signals or noise (PB3 in Figure 2,
the same as PB1). However, the separated noise components,
Ynoiseðf; τÞ, may still include a part of the MT signal components.
The large amplitudes of Ynoiseðf; τÞ strongly affect the low S/N and
should be treated as noise components. For removing only the large
amplitudes of Ynoiseðf; τÞ from the MTanalysis (PD in Figure 2), we
apply median masking to Ynoiseðf; τÞ:

Ynoiseðf;τÞ ¼
�

0

Ynoiseðf;τÞ
ðjYnoiseðf;τÞj≥ jYnoise;medðfÞjÞ
ðjYnoiseðf;τÞj < jYnoise;medðfÞjÞ ;

(14)

where jYnoise;medðfÞj is the median value of jYnoiseðf; τÞjðτ ¼ 1; : : : ;
TsðfÞÞ. Sawada et al. (2006) test that masking more amplitudes
from the separated components can lead to a loss of more target
signals, and less masking leads to an increase of the remaining
noise. We thus set the threshold to the median. The remaining spec-
tra after applying median masking are recognized as MT signals.
The MT data can be reconstructed from the inverse separation
matrix BðfÞ and unmasked/masked separated components Yðf; τÞ.
Even in the case in which the remaining spectra are noise, their ef-
fects on the S/N of the MT data are smaller than the effect of the
masked (large) amplitudes. The number of spectra is not reduced
because not the time windows but only the amplitudes of Ynoiseðf; τÞ
are removed. This advantage denotes that FDICA-MT directly re-
moves noise from only the local data.
If either mSN is less than one, FDICA is applied to the two local

magnetic-field data and two reference data. In the obtained four sep-
arated components, the noise and natural MT signals are determined
on the basis of BðfÞ (PB4 in Figure 2, the same process as PB2).
As above, the median masking in equation 14 is applied to the sep-
arated components regarded as noise (PD in Figure 2). Using BðfÞ
and masked/unmasked Yðf; τÞ, the local magnetic-field data are re-
constructed. FDICA is applied to the two local electric-field data
and two “raw” reference data as we do for the magnetic data and
determine the electric-field signals (PB5 in Figure 2, the same as
PB4). Subsequently, we apply the median masking (PD in Figure 2)
and reconstruct the electric-field signals.
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In the estimation of the MT response functions, the stacking of
spectra described by Vozoff (1972) and the remote-reference
processing described by Gamble et al. (1979a) are applied using
raw reference data. Although the separated components are mod-
eled by a specific distribution (i.e., a Laplace distribution), the re-
constructed MT data from BðfÞ and Yðf; τÞ can be treated as well
as the raw MT data with less noise because the data approach to
Gaussian distributions by the central limit theorem (Hyvärinen et al.,
2001). As a result, for error estimation, we use the method by
Gamble et al. (1979b), which is a simple method based on error
propagation. In this study, all of the estimated errors are derived
with confidence levels of 95%.
It is important to note that the described method of signal-noise

separation leads to cleaned raw spectra that can be used as input to
any more advanced strategy for MT impedance estimation, such as
bounded influence robust processing (Chave and Thomson, 2004).
We use spectral stacking to illustrate the strength of the method in a
simple example, but other methods would equally work.

APPLICATION TO MT DATA ACQUIRED AT
KAKIOKA MAGNETIC OBSERVATORY

To confirm the effectiveness of FDICA-MT, we specifically ex-
amine the MT data acquired at the Kakioka Magnetic Observatory.
High-quality MT responses are estimated by Fujii et al. (2015) on
the basis of recent 11-year data at this observatory. Compared with
the long-term responses, the response estimation from the short-

term data enables a check of noise-reduction performance of
FDICA-MT. We use 1 s sampling MT data between 1 March 2015
and 16 March 2015 (Figure 3a), and 1-minute sampling MT data
between 1 February 2015 and 16 March 2015 (Figure 3b). The
data set was obtained from the website of the Kakioka Magnetic
Observatory (Kakioka Magnetic Observatory, 2015a, 2015b,
2015c, 2015d, 2015e, 2015f). To avoid the good S/N owing to large
MT signal amplitudes, the duration was selected so that the average
K index per 3.0 hours was below 2.0, indicating moderately quiet
geomagnetic activity. In this study, magnetic-field data acquired at
the Memambetsu Magnetic Observatory are used for reference data.
The MT responses by FDICA-MT are compared with those ob-

tained using BIRRP version 5.3.2 (based on Chave and Thomson,
2004). We use one reference site (Memambetsu) for fair compari-
son, although BIRRP can treat any number of reference data. We
apply STFT after detrending by the first-order difference filter. In
the analysis for the 1 s sampling data, all spectra are the 7th–18th
bins in each Fourier-transform length, and the same length is ap-
plied to the same frequency in BIRRP and FDICA-MT. When
processing the 1-minute sampling data, we use the 10th–16th bins
for FDICA-MT. But for BIRRP, we input spectra of the 5th–8th bins
derived by halving the Fourier-transform length for FDICA-MT be-
cause more stable results are obtained. The other parameters in the
BIRRP analysis are set based on default values that have yielded the
best results (the parameters are provided as a data supplement). The
analysis flow of the two codes, FDICA-MT and BIRRP, is summa-
rized in Figure 4. In FDICA-MT, we divide the time-dependent

Figure 3. RawMT data at Kakioka: (a) 1 s sampling MT data obtained during 1–16 March 2015 and (b) 1 minute sampling MT data obtained
between 1 February 2015 and 16 March 2015.

Noise reduction of MT data using FDICA E27

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

30
.5

4.
11

0.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

79
2.

1



spectra to evaluate the signal-separation performance and we select
the data sections to be analyzed based on “PC” (Figure 2). The en-
tire spectra at periods longer than 43 s are analyzed, without divid-
ing the data sections, because the effects of inherent noise seem
small on the basis of mSN and the total number of time windows
is insufficient for division into many sections.
The MT response functions at Kakioka derived from the two

methods are presented in Figure 5. Those at periods shorter than
341 s are derived from the 1 s sampling data, and those at longer
periods are derived from the 1-minute sampling data. The responses
by Fujii et al. (2015) derived from 11-year data processed by
BIRRP are also indicated. The MT responses derived using FDICA-
MT have smaller estimated errors and change more smoothly than
BIRRP at the period band between 18 and 3072 s. Therefore, the
FDICA-MT results also correspond to those by Fujii et al. (2015),
which are based on the 11-year data, whereas the length of our data
set is fewer than 1.5 months. It can therefore be inferred that
FDICA-MT can maintain the accuracy of MT responses even if
the number of analyzed spectra is substantially fewer than the con-
ventional method, which is a great benefit for monitoring sub-
surface environments. However, discrepancies between the MT
responses by FDICA-MT and those reported by Fujii et al. (2015)
are observed at the period of 57–100 s. Moreover, it is noteworthy
that at the periods shorter than 13 s and longer than 7680 s the ap-
parent resistivity and phase curves by FDICA-MT show less-
smooth features and large estimated errors. This can be explained
as follows: At periods shorter than 13 s, (1) the low S/N at the local
and reference sites interrupts the MT signal determination (i.e., the
condition is far from equation 12) and (2) fewer spectra are available
for stacking due to fewer selected data sections, and at periods
longer than 7680 s, fewer spectra are obtainable owing to the long
Fourier transform length.

NOISE-REDUCTION PERFORMANCE

To quantitatively evaluate the noise-reduction performance of
FDICA-MT, synthetic coherent noise was added to the raw MT data
at Kakioka. All additional noise components in this section satisfy
(1) each couple of the noise waveforms is independent, (2) all are
coherent noise, and (3) formed by the combinations of rectangular
waves and random noise. For a quantitative discussion related to
noise-reduction performance, the apparent resistivity difference
(ARD; %) is defined as

ARD ¼ jρK − ρN j
ρK

× 100; (15)

where ρK denotes the apparent resistivity derived from the raw MT
data without synthetic noise by BIRRP or FDICA-MT (Figure 5)
and ρN represents those derived from the MT data including the
synthetic noise by BIRRP or FDICA-MT.
At first, two independent noise waveforms are prepared for the

1-minute sampling data at Kakioka (Figure 3b). An example of
the EM waveforms, including the synthetic noise, is presented
in Figure 6. The maximum noise amplitudes are adjusted to
200 mV/km in Ex, 1000 mV/km in Ey, and 6 nT in Hx and Hy

in the case of Figure 6. The noise affects 63% of the time series
in Figure 6. Here, we particularly examine the period range of
480–3072 s because the apparent resistivity curves obtained using
BIRRP and FDICA-MT (Figure 5) show smooth features over
this range with small estimated errors and correspond to the curves
derived from the long-term data (Fujii et al., 2015). The study quan-
titatively evaluates the noise-reduction performance by BIRRP
and FDICA-MT. However, BIRRP degradation can be expected
because it theoretically breaks down at 50% noise contamination,
as shown in Figure 5a.
As a result, we successfully obtain the apparent resistivity curves

using FDICA-MT, although the MT data include large synthetic
noise. Figure 7 is an example of MT responses derived from the
noisy data (Figure 6) using BIRRP and FDICA-MT. As shown in
Figure 7, the average ARD (equation 15) of ρxy and ρyx obtained by
BIRRP is 105% and 5%, respectively, whereas the average ARD
obtained using FDICA-MT is only 9% and 7%. The phases derived
from the noisy data indicate similar features to the apparent resis-
tivity, and the FDICA-MT results are similar to the case of no syn-
thetic noise. We therefore only focus on apparent resistivity in the
following section for the sake of simplicity.
We vary the noise amplitude and contamination time span to

evaluate the relation between ARD and the noise level. Two inde-
pendent time series of noise are assumed here, with amplitudes of
50 or 200 mV/km in Ex, 250 or 1000 mV/km in Ey, and 6 nT in Hx

and Hy. The noise contamination time span is 40%, 56%, 63%,
81%, or 94% of the time series. In all cases and frequencies,
mSNðx; fÞ and mSNðy; fÞ are greater than one. The relationships be-
tween the noise contamination time span and the average ARD by
BIRRP and FDICA-MTare summarized in Figure 8 over the period
range of 480–3072 s. In FDICA-MT, the average ARD of the con-
taminated data is less than 20% even at the longest noise contami-
nation time span.
For testing noisier cases, four independent synthetic noise com-

ponents are added to the 1 minute sampling raw data, whereas pre-
vious cases used only two. In general, the conventional FDICA for
MT can accommodate a case in which noise components are limited

Figure 4. Flow of MT data analysis in this study. The process flow
of FDICA-MT is explained in detail in Figure 2.
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to two when two MT signal components exist. This test elucidates
the robustness of FDICA-MT in the case of many origins of noise
(i.e., the number of all sources is greater than four). The four time
series of noise have maximum amplitudes of 50 or 200 mV/km in
Ex, 250 or 1000 mV/km in Ey, and 4 or 20 nT in Hx and Hy. When
the noise with 20 nT as the maximum amplitude is added to the
magnetic field, mSN becomes less than one. If noise of 4 nT maxi-
mum amplitude is included,mSN also drops to less than one at short
periods (approximately 1000 s). We applied FDICA-MT to these
noisy data and derived the MT responses and ARD. The resultant
ARD and estimated errors of the apparent resistivity are presented
in Figure 9, similarly to Figure 8. In FDICA-MT, the average ARD
is also less than 20% but it remains low up to a noise contamination
time span below 63%. The estimated errors of FDICA-MT results
(Figure 9d) are again smaller than those obtained by BIRRP
(Figure 9c).
Finally, we add two independent time series of synthetic noise to

the 1 s sampling MT data (Figure 3a), where originally large noise
was mixed. The two coherent noise components have amplitudes
of 200 mV/km in Ex and Ey, and 4 nT in Hx and Hy. They are
added to the raw MT data with varied noise contamination time
span (i.e., 40%, 56%, 63%, 81%, or 94%). Using these data sets,
we evaluate the noise-reduction performance of FDICA-MT on the
basis of average ARD over the range of 57–170 s. In these tests,

under a high-level noise environment, the mSN are all greater than
one. The results are presented in Figure 10. The average ARD re-
mains at less than 20% if the noise contamination time span is less
than 81%.

DISCUSSION

Discussion on the analysis of raw MT data at Kakioka

Here, we discuss the cause of discrepancies between the re-
sponses by FDICA-MT and those reported by Fujii et al. (2015),
effects of data section length, and the origin of noise included in
the MT data at Kakioka.
At the periods of 57–100 s, the MT responses by FDICA-MT

(Figure 5) have small estimated errors, but they indicate a difference
from the responses by Fujii et al. (2015). This is because the re-
sponse functions at this period band are derived from relatively
short-term data (within 16 days) and are possibly affected by insta-
bility of the source field. The source field’s effect on the MT re-
sponse has been reported in many studies (Egbert et al., 2000;
Brändlein et al., 2012; Romano et al., 2014; Murphy and Egbert,
2018). Romano et al. (2014) conclude that MT responses at the
period bands especially at approximately 20–100 s are unstable when
the Ap index, the magnitude of geomagnetic activity, is smaller than

Figure 5. MT response curves. Apparent resistiv-
ity derived using (a) BIRRP and (b) FDICA-MT.
Phases by (c) BIRRP and (d) FDICA-MT. The re-
sponses at periods shorter than 341 s are derived
from the 1 s sampling data, and those at longer
periods are derived from the 1 minute sampling
data. The black curves depicted in (a-d) are the
apparent resistivity or phase derived from the
MT data obtained during 2000–2011 (Fujii et al.,
2015). All estimated errors are within a confidence
level of 95%.
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10. They also report a negative correlation between the apparent re-
sistivity and the Ap index, such that a smaller Ap index is associated
with a larger apparent resistivity. In our study, the apparent resistivity
obtained by FDICA-MT is based on MT data under the average K
index per 3.0 hours at less than 2.0, corresponding to an Ap index of
6. The apparent resistivity reported by Fujii et al. (2015) is based on
the 11-year geomagnetic fluctuations and is not affected by the source
field, although our results are affected. These situations, such as the
period band, magnitude of geomagnetic activity, and increase in ap-
parent resistivity based on the short-term MT data (within 16 days),
are similar to the result reported by Romano et al. (2014). We derived
the MT responses during 16–20 March in 2015 when the average K
index was moderately high (3.45) and with Ap index of 18 (provided
as a data supplement). They correspond to the response of the 11-year
data, supporting the above implication on the cause of differences
between the two MT responses.
At the short period band between 7 and 37 s, we selected the data

sections following PC (Figure 2). The appropriate length of the di-
vided sections must be discussed because each section length might
affect the obtained MT responses. For example, focusing on the
period of 21 s, we vary the total number of time windows in each
section from 42 to 5400. Note that the Fourier-transform length is
fixed at 256 s and derives the responses. The results show that a data
section length between 168 and 1800 provides similar MT re-
sponses. At other periods (21–37 s), the short-side limitation of each
section for the stable evaluation of the MT responses is 168 time

windows based on the smoothness/consistency through the frequen-
cies. Although the most suitable length of data sections should be
found varying the Fourier transform length, our trial-and-error ap-
proach with each section having more than 100 time windows is
considered to be acceptable.
To confirm whether the FDICA-MT properly rejects the cultural

noise using “PB1-5” and “PD” (Figure 2), we reconstruct the time
series of noise components. This study specifically examines the
periods with small estimated errors in FDICA-MT: 57–170 s in the
1 s sampling data and 480–3072 s in the 1 minute sampling data.
Figure 11a shows the time series of noise extracted from the 1 s
data, which is obtained by inverse Fourier transform. Figure 11b
is also the time series of noise, for which the original sampling
is 1 minute. In Figure 11a, high-amplitude noise is clearly observ-
able in the daytime, but during the night (00:00–04:00 am) the noise
has smaller amplitudes. In Figure 11b, the noise is apparent during
the daytime and nighttime, but the amplitude is smaller in the latter.
On the basis of the environment near the observatory, the cultural
noise in the MT data at Kakioka can be considered to come from a
distant urban area (e.g., Tokyo), and, as a result, the noise seems to
correlate with human activity. However, at the period band of 480–
3072 s, the BIRRP and FDICA-MT yield small estimated errors of
the MT response functions and are similar to the high-quality re-
sponses based on the long-term data by Fujii et al. (2015) (Figure 5).
This suggests that the noise contamination of the 1 minute sampling
data at Kakioka is not severe. We can also better understand why
the FDICA-MT succeeded in processing the 1 s data. As shown in
Figure 11a, the noise contaminates most parts of the data, whereas
the FDICA-MT is robust to such a continuous noise as shown in
Figures 8–10. Therefore, MT response functions can be derived
with high accuracy using FDICA-MT.
Magnetic data records at Kakioka have been well maintained

over many years and may be believed to be under noise-free con-
ditions. The cultural noise is removed from the data with 1 minute
and hourly sampling rates by the historical effort of the magnetic

Figure 6. The 1 minute sampling MT data with synthetic coherent
noise. The original raw time series are shown in Figure 3b. The noise
has a maximum amplitude of 200 mV/km in Ex, 1000 mV/km in Ey,
and 6 nT inHx andHy. The noise contamination time span is 63% of
the time series.

Figure 7. Apparent resistivity curves derived from the MT data
with synthetic noise: (a) BIRRP and (b) FDICA-MT. The black
diamonds represent the responses derived from raw MT data.

E30 Sato et al.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

30
.5

4.
11

0.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

79
2.

1



observatory (Kakioka Magnetic Observatory, 2019). However,
MT data with a 1 s sampling rate possibly contain cultural noise
(Kakioka Magnetic Observatory, 2019). It is difficult to derive
MT responses with small estimated errors from the short-time data

with a 1 s sampling rate, as shown in the BIRRP results. This in-
dicates that the data with a 1 s sampling rate include some cultural
noise, as shown in Figure 11a. The data set with a 1 s sampling rate
can be considered suitable for validating our FDICA-MT.

Figure 8. (a) Correlation between the noise con-
dition and the average ARD (equation 15) by
BIRRP in the range of 480–3072 s. The vertical
axis shows the average ARD between the raw
MT data and MT data with two synthetic noise
components. The horizontal axis shows the noise
contamination time span. The red and light-blue
lines show the results obtained under the condition
in which two noise components have maximum
amplitudes of 50 mV/km in Ex, 250 mV/km in
Ey; and 6 nT in Hx and Hy. The brown and
dark-blue lines show the results obtained under
the conditions in which two noise components
have maximum amplitudes of 200 mV/km in
Ex, 1000 mV/km in Ey, and 6 nT in Hx and
Hy. The circles represent the average ARD of
ρxy. The diamonds are the average ARD of ρyx.
(b) Correlation between the noise condition and
the average ARD derived using FDICA-MT.
(c) Average estimated errors of apparent resistivity
derived using BIRRP. (d) Average estimated errors
obtained using FDICA-MT.

Figure 9. (a) Correlation between the noise con-
dition and the average ARD (equation 15) by
BIRRP in the range of 480–3072 s. The vertical
axis shows the average ARD between the raw
MT data and the MT data with four synthetic noise
components. The horizontal axis shows the noise
contamination time span. The red and light-blue
lines show the results obtained under the condition
of four noise components with maximum ampli-
tudes of 50 mV/km in Ex, 250 mV/km in Ey;
and 4 nT in Hx and Hy. The brown and dark-blue
lines obtained under the conditions with two noise
components with amplitudes of 200 mV/km in Ex,
1000 mV/km in Ey, and 20 nT in Hx and Hy. The
circles represent the average ARD of ρxy. The di-
amonds are the average ARD of ρyx. (b) Correla-
tion between the noise condition and the average
ARD derived using FDICA-MT. (c) Average
estimated errors of apparent resistivity derived
using BIRRP. (d) Average estimated errors using
FDICA-MT.
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Discussion on the noise-reduction
performance of FDICA-MT

The results of the application to the noisy data,
which combine the two synthetic noise com-
ponents and 1 minute raw data, show that the
FDICA-MT performance is independent of the
noise amplitude and noise contamination time
span. Although the accuracy of the derived MT
responses depends on the noise levels, the
estimated errors are comparable to the observed
temporal changes of responses, such as around
volcanic regions as potential geothermal energy
sources (e.g., 20% of the apparent resistivity,
Aizawa et al., 2011). Our method can be suffi-
ciently useful to monitor subsurface phenomena
such as volcanic eruptions. The noisy MT data
here include (1) two dominant MT signals,
(2) two large synthetic noise components, and
(3) other small noise originally included in the
raw data (Figure 11b). FDICA-MT can be ex-
pected to process MT data contaminated by
high-level noise if the number of large noise
components is limited to two and if the S/N of
the local magnetic field (or remote site) is suffi-
ciently high.

Figure 10. (a) The vertical axis shows the average ARD (equation 15) between the raw
MT data and the MT data with two synthetic noise components of 57–170 s. The hori-
zontal axis shows the noise contamination time span. The two noise components have
amplitudes of 200 mV/km in Ex and Ey and 4 nT inHx andHy. The red circles represent
the average ARD of ρxy. The light-blue diamonds are the average ARD of ρyx. (b) Aver-
age estimated errors of apparent resistivity derived by FDICA-MT from the MT data
with synthetic noise.

Figure 11. (a) Noise extracted by FDICA-MT from the raw MT data on March 1 (1 s sampling) at Kakioka included in the range of 57–170 s.
(b) Noise extracted by FDICA-MT from the raw MT data obtained on March 1 (1 minute sampling) at Kakioka in the range of 480–3072 s.
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Under the condition that the four synthetic noise components are
added to the 1 minute sampling raw data, the noise-reduction per-
formance of FDICA-MT can retain a sufficiently high level if the
noise contamination time span is less than 63% (Figure 9b and 9d).
In cases of low S/N of magnetic-field data, we apply FDICA twice,
and the effect of remaining noise can be considered large. Addition-
ally, in the case of a high S/N, there are more than four components,
and this can be considered to cause the large amount of remain-
ing noise.
Based on the results of FDICA-MT noise-reduction performance

in the 1 s sampling data (Figure 10), as with the four synthetic noise
components in the 1 minute data (Figure 9b and 9d), the noise-
reduction performance of FDICA-MT is satisfactory if the noise
contamination time span is less than 81%. From noise components
extracted from the raw data (Figure 11a), we ascertain that the cul-
tural noise is included in the 1 s sampling raw data. Therefore, the
reason for the degradation of the noise-reduction performance under
the noise contamination time span greater than 81% is the same as
the case of adding four noise components. Consequently, four or
more large noise components strongly interrupt the estimation of
MT responses with high accuracy, although we infer that two large
noise components can be removed properly using FDICA-MT.

CONCLUSION

This study proposes an algorithm of FDICA for application to
MT data (FDICA-MT), within which four major modifications
are adopted. First, a method to estimate the minimum S/N of local
magnetic-field data is developed. Second, a criterion of separated
components on the basis of the S/N of magnetic field data is set.
Third, we develop a method to select data sections with small in-
herent noise for good signal-separation performance. Finally, a
method is developed to extract MT signals in separated components
regarded as noise.
FDICA-MT is applied to the raw MT data obtained at Kakioka.

A comparison with the responses derived using a conventional
method, BIRRP, shows that the response curves obtained using
FDICA-MT are smoother and their errors are smaller. We conclude
that the FDICA-MT is a powerful estimator of MT responses even if
most of the time-series data are contaminated by cultural noise. It
also indicates that MT response functions can be derived even from
short-term data because the long-term data for stacking (i.e., reduc-
ing noise) are not required.
Finally, we test the noise-reduction performance by applying

FDICA-MT to noisy MT data. Although the analyzed data are lim-
ited, our FDICA-MT algorithm is considered effective for MT data
analysis under the following conditions. If the S/N of the magnetic
field at the local site is satisfactory and if only two large noise com-
ponents are mixed, then FDICA-MT yields highly accurate MT re-
sponses from noisy data. If the S/N of the magnetic field is not
sufficiently high or if there are several large noise components,
FDICA-MT should be applied under the condition that the reference
data have a high S/N. Even if the conditions cannot be achieved,
the obtained MT responses using FDICA-MT yield higher quality
results than those produced using conventional methods.
The FDICA-MT provides the opportunity to obtain MT re-

sponses from shorter data so it can be applied to monitoring vol-
canic activity, geothermal fields, and hydrocarbon reservoirs even
in high-noise environments. This important advantage over conven-
tional processing is expected to be beneficial for the estimation of

MT responses in highly populated areas for disaster prevention
(e.g., around active faults in urban areas) and relevant environmen-
tal studies.
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APPENDIX A

A CALCULATION METHOD FOR S/N OF LOCAL
MAGNETIC-FIELD DATA

Local magnetic-field data HxðfÞ and reference magnetic-field
data RxðfÞ at a frequency can be represented as

HxðfÞ ¼ SðfÞ þ NLðfÞ; (A-1)

RxðfÞ ¼ SðfÞ þ NRðfÞ; (A-2)

where SðfÞ ¼ fSðf; 1Þ; : : : ; Sðf; TÞgtr is the MT signal,
and NLðfÞ ¼ fNLðf; 1Þ; : : : ; NLðf; TÞgtr and NRðfÞ ¼
fNRðf; 1Þ; : : : ; NRðf; TÞgtr are noise at the local and reference
sites, respectively. Under the assumption that the MT signal S
and noise (NR and NL) are independent (i.e.,�
S;N�

L

	
¼

�
S;N�

R

	
¼

�
NL;

N�
R

	
¼ 0) and by substituting equations A-1 and A-2 for the first

and second terms on the right side of equation 9, we obtain

hðSþ NRÞ�; ðSþ NLÞi
hðSþ NRÞ�; ðSþ NRÞi

ðSþ NRÞ ¼
jSj2

jSj2 þ jNRj2
ðSþ NRÞ;

(A-3)

ðSþ NLÞ −
hðSþ NRÞ�; ðSþ NLÞi
hðSþ NRÞ�; ðSþ NRÞi

ðSþ NRÞ

¼ ðSþ NLÞ −
jSj2

jSj2 þ jNRj2
ðSþ NRÞ

¼ NL þ jNRj2S − jSj2NR

jSj2 þ jNRj2
: (A-4)

Dividing the squared Euclidean of equation A-3 by equation A-4
gives
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j R�
x;Hx

R�
x;Rx

Rxj2
jHx −

R�
x;Hx

R�
x;Rx

Rxj2
¼

j jSj2
jSj2þjNRj2 ðSþ NRÞj2

jNL þ jNRj2S−jSj2NR

jSj2þjNRj2 :j2

¼
jSj4ðjSj2þjNRj2Þ
ðjSj2þjNRj2Þ2

jNLj2 þ jSj2jNRj2ðjSj2þjNRj2Þ
ðjSj2þjNRj2Þ2

¼
jSj4

ðjSj2þjNRj2Þ

jNLj2 þ jSj2jNRj2
ðjSj2þjNRj2Þ

¼ jSj4
jSj2jNLj2 þ jSj2jNRj2 þ jNRj2jNLj2

≤
jSj2
jNLj2

: (A-5)

The equality can be established only when there is no noise in the
reference data (jNRj ¼ 0). The left side of the first line in equa-
tion A-5, which is equal to the squared mSNðx; fÞ in equation 10,
is the minimum value of the right side of the fifth line, which is
equal to the squared S/N of the local magnetic-field data. The ratio
will be downward biased by noise in the reference data. We can
therefore conclude that mSN is always smaller than the true S/N.

APPENDIX B

THE REASON FOR SETTING STEPPED
THRESHOLDS

In this study, we select noise components based on a continuous
threshold if the number of MT signals in the four separated com-
ponents is limited to one. However, a stepped threshold is required
when there are two (general case) or more MT signals. To prevent
the extraction of the noise component as an MT signal, we briefly
focus on the relationship betweenmSN (equation 10) and the inverse
of separation matrix BðfÞ (equation 5) in the x-direction. Let us
consider that only one MT signal exists, although such a case is
not realistic. We determine only one separated component as the
MT signal, and the relationship can be established using the BðfÞ:

1

mSNðx; fÞ
≥

P jBðfÞnoise inHx
jP jBðfÞsignal inHx
j ≥

jBðfÞnoise inHx
jP jBðfÞsignal inHx
j

¼ jBðfÞnoise inHx
j

max
k

jBðfÞ3kj
; (B-1)

where BðfÞnoise inHx
and BðfÞsignal inHx

are elements of BðfÞ and de-
note the contribution of the noise and MT signal components toHx,
respectively. The expression

P jBðfÞnoise inHx
j∕P jBðfÞsignal inHx

j
in equation B-1, which is the summation of all jBðfÞnoise inHx

j over
the summation of all jBðfÞsignal inHx

j, denotes the reciprocal S/N
of Hx calculated from the FDICA result. If equation B-1 is estab-
lished, we can then determine the noise components on the basis
of a continuous threshold that jBðfÞnoise inHx

j is smaller than
maxkjBðfÞ3kj∕mSNðx; fÞ. However, when two (general case) or
more MT signals exist, we obtain the relationship as

jBðfÞnoise inHx
j

max
k

jBðfÞ3kj
>

jBðfÞnoise inHx
jP jBðfÞsignal inHx
j ≤

1

mSNðx; fÞ
: (B-2)

Based on equation B-2, in such a general case, we cannot ensure
that the contribution of a noise component holds jBðfÞnoise inHx

j
≤ maxkjBðfÞ3kj∕mSNðx; fÞ, which is obtained from equation B-1.
The possibility of holding jBðfÞnoiseinHx

j>maxkjBðfÞ3kj∕mSNðx;fÞ
should therefore be considered. As a result, if we set a continuous
threshold for the signal determination of FDICA, the noise compo-
nents are possibly extracted as MT signals when two or more signal
components exist. We should therefore prepare the margin and set
the threshold as stepped rather than continuous to prevent this mis-
take. Moreover, the largest contributions to the magnetic-field data
do not likely correspond exactly to each magnetic-field data (e.g.,
Y3ðf; τÞ with a maximum value in the contribution to Hxðf; τÞ and
Hyðf; τÞ). Even in such a case, by selecting the separated compo-
nents with a large contribution to the magnetic field data following
equation 11, we can identify which separated components corre-
spond to the MT signals.
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