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Abstract. We apply a Hamiltonian particle method, one of the particle methods, to simulate seismic wave propagation in a
cracked medium. In the particle method, traction free boundaries can be readily implemented and the spatial resolution can
be chosen in an arbitrary manner. Utilisation of the method enables us to simulate seismic wave propagation in a cracked
medium and to estimate effective elastic properties derived from the wave phenomena. These features of the particle method
bring some advantages of numerical efficiencies (e.g. calculation time, computational memory) and the reduction of time for
pre-processing.

We describe first our strategy for the introduction of free surfaces inside a rock mass, i.e. cracks, and to refine the spatial
resolution in an efficientway.We thenmodel a 2D crackedmediumwhich contains randomly distributed, randomly oriented,
rectilinear, dry and non-intersecting cracks, and simulate the seismicwave propagation of P- and SV-planewaves through the
region.We change the crack density in the cracked region and determine the effective velocity in the region. Our results show
good agreement with the modified self-consistent theory, one of the effective medium theories. Finally, we investigate the
influence of the ratio of crack length to particle spacing on the calculated effective velocities. The effective velocity obtained
becomes almost constant when the ratio of crack length to particle spacing is more than ~20. Based on this result, we propose
to use more than 20 particles per crack length.
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Introduction

It is important to estimate physical properties of cracked rocks in
many scientific and engineering fields. Especially in exploration
geophysics, understanding the behaviour of seismic waves in
cracked rock masses is of interest when prospecting for earth
resources. In the past, many theoretical studies have been
directed at estimating the elastic properties of cracked media.
O’Connell andBudiansky (1974) proposedamodel to investigate
macroscopic elastic properties based on a self-consistent
approximation. Budiansky and O’Connell (1976) calculated
the elastic moduli of bodies, in which planar cracks are
randomly distributed, on the basis of the self-consistent
method. Henyey and Pomphrey (1982) proposed a modified
self-consistent theory with a set of differential equations for
the effective elastic moduli, taking into account the crack
interaction energy. Davis and Knopoff (1995) showed that the
mean-field approximation, also known as the theory for non-
interacting cracks, is appropriate for the problem of finding the
modulus of a material with a high concentration of cracks by
using a boundary integral method. In spite of a variety of
approaches, theoretical approaches suffer from limitations
such as crack geometries, long wavelength approximation,
and so on.

Numerical studies, which may be less restrictive, have also
been introduced in order to investigate the effective elastic
properties of cracked media. Saenger and Shapiro (2002)
and Saenger et al. (2004) conducted finite difference (FD)
simulations with rotated staggered grids (Saenger et al., 2000)
in order to investigate the effective elastic properties of fractured
2D and 3D media, respectively. Dahm and Becker (1998) also

calculated elastic moduli for media containing strongly
interacting cracks using a boundary element method and a
finite element method (FEM). Their results were in good
agreement with the modified self-consistent theory predictions.
However, models for numerical analysis need to be discretised
with fine grids whose spatial scale is adjusted for representing
small-scale cracks. In addition, the accommodation of model
boundary or crack boundary shape remains a problem in
numerical methods such as finite difference schemes. The
discretisation in space for cracked media remains a cause of
inefficiency in simulations, for which some improvement has
sought.

The estimation of the elastic properties of media can readily
be accommodated in the simulation of seismicwave propagation.
Seismic simulators using particle methods have been developed
bymany researchers (Toomey and Bean, 2000; Del Valle-Garcia
and Sanchez-Sesma, 2003; O’Brien and Bean, 2004; Mariotti,
2007; O’Brien et al., 2009; Takekawa et al., 2012). Takekawa
et al. (2012) applied a Hamiltonian particle method (HPM)
(Suzuki and Koshizuka, 2008; Kondo et al., 2010) to simulate
surface wave propagation. In the HPM, the equation of motion of
each particle is formulated in a Hamiltonian framework. The
unique approach of HPM is that the deformation gradient tensor
on each particle is decided by using the least-squares method.
A free surface is introduced in a simple way, by ending the
interactions of particles at the surface. Since arbitrary refinement
of spatial resolution is possible in a simple manner in the
application of HPM (Takekawa et al., 2012), we are able to
choose the optimum number of particles without unnecessarily
consuming computational resources and so enhance the
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efficiency of the simulation. If we use a local refinement
technique in the FD method, we need special treatment around
the refined area for the local fine grids (Aoi and Fujiwara, 1999).
In FEM, we need a procedure to redefine the mesh for the
refined area. Thus, the HPM should lead to a reduction of time
taken for pre-processing. Furthermore, the accuracy of HPM
for modelling of the surface waves is higher than the finite
difference method with rotated staggered grids (Takekawa
et al., 2013). These features could allow us to efficiently
predict not only strong ground motion induced by earthquakes
(Takekawa et al., 2012), but also the scattering of seismic waves
by fractures (Okamoto et al., 2013), and have other applications
inmaterial science and engineering as well (Saenger et al., 2012).

In this paper, we propose HPM as a method to effectively
estimate elastic properties of cracked media. We first explain our
strategy for introducing the cracks in the rock mass and calculate
the seismic wave field induced by a single crack in order to
validate our strategy. We then investigate the validity of the
particle method for determining the effective properties of
cracked media comparing the numerical results with those
from the analytical approach. We then investigate the effect of
the difference of spatial resolution around cracks on the effective
velocity for efficient discretisation.

Method

Hamiltonian particle method

In the HPM, a model for analysis is represented by an aggregate
of particles. Each particle interacts with its neighbouring
particles, and the extent of the interaction between particles is
controlled by a weighting function w(r):

wðrÞ ¼ re=r � 1ðr � reÞ; 0 ðr > reÞ ð1Þ
where r is the distance between particles and re is the radius of
the influence domain. The influence domain between particles
i and j is determined by the following equations:

re ¼ ðrei þ rejÞ=2 ð2Þ
rei ¼ adi ð3Þ

where rei and rej are the influence domains of particles i and
j, a is a coefficient, and di is the radius of the particle i. The
calculation of the elasticwave propagation is based on the particle
interactions between particles whose separation is less than re.

The deformation gradient tensors at each particle position
are defined to minimise the error function ei, where

ei ¼ SjjFir
0
ij � rijj2w0

ij: ð4Þ
Here, Fi is the deformation gradient tensor at the position of

particle i, rij
0 and rij are the initial and current relative positions

of particles i and j, respectively, and wij
0 is the weighting value

calculated by equation 1. The deformation gradient tensor Fi

canbeobtainedby calculating the partial differential of equation4
with respect to Fi:

Fi ¼ Sjrij � r0ijw
0
ijA

�1
i ð5Þ

Ai ¼ Sjr
0
ij � r0ijw

0
ij: ð6Þ

We calculate strain and stress tensors as follows:

E ¼ ðFTF� IÞ=2 ð7Þ
S ¼ 2mEþ ltr ðEÞI: ð8Þ

The total elastic strain and kinetic energy are defined as:

V ¼ SiðEi : SiDBiÞ=2 ð9Þ

K ¼ Siðmijvij2Þ=2 ð10Þ
where DBi is the volume of particle i, mi is the mass of particle i,
vi is the velocity of particle i. Then we can calculate the equation
of motion of the system:

(a) (b)

Fig. 1. The schematic figure of the introduction of a crack. Solid circles are particles, the dotted line is a crack, and the solid lines represent connectivity
between particles. A free surface inside the elastic medium is introduced by cutting off the connectivity that intersects the surface. (a) Original particle
arrangement. (b) Particle arrangement after refinement of spatial resolution in the vicinity of the crack.
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riDBiqvi=qt ¼ �qðV þ KÞ=qxi
¼ SjðFiSiA

�1
i r0ijDBi þ FjSjA

�1
j r0ijDBjÞwij

ð11Þ

We apply a symplectic scheme, which is a time integration
scheme conserving the total energy of the Hamiltonian systems,
as follows:

v t þ 1
2
Dt

� �
¼ v t � 1

2
Dt

� �
þ Dt � qvðtÞ=qt ð12Þ

xðt þ DtÞ ¼ xðtÞ þ Dt � v t þ 1
2
Dt

� �
: ð13Þ

Although the time updating process described above is
very simple and the computational cost is comparable with the
explicit Euler method, we can calculate particle motions with
good energy conservation. On the other hand, it is known that
high-frequency local oscillations occur, due to spurious singular
modes that degrade numerical accuracy, although the total
energy can be conserved. This results from the definition of
the deformation gradient tensors only at the particles. Kondo
et al. (2010) developed a suppression method by introducing an
artificial potential force that has no physical meaning, with a
coefficient to vary its effect. The coefficient of the artificial force
(equation 14 in Kondo et al. (2010)) is decided by trial and error
in this study. For numerical stability, we apply the Courant
condition:

Dt � Dx=Vmax ð14Þ
where Dt is the time step, Dx is the minimum particle spacing
and Vmax is the maximum P-wave velocity in the model.

Introduction of cracks

In HPM, a free surface can be introduced just by setting
the interactions between particles at the surface to zero
(Suzuki et al., 2007; Takekawa et al., 2012). In this study, we
take advantage of this feature to introduce traction-free
boundaries inside the rock mass (i.e., cracks). Figure 1 shows
the strategy of the introduction of a single crack, and the
refinement of the spatial resolution only around the crack. The
free-surface is introduced just by cutting off the connectivity
across the crack. This technique is simple to implement, but the

reproducibility of the crack depends on the particle spacing. To
ensure enough spatial resolution, we can replace a particle
which is near the crack with four particles (Figure 1b). This
procedure is also simple to implement. If we need finer particle
spacing, we can further divide each quarter particle into four
particles. In this way, arbitrary refinement of spatial resolution
can be achieved in an effective manner. Figure 2 shows an
example of particle refinement around cracks using the above
approach. Since we use only distances between particles to

Fig. 2. An example of particle arrangement after the refinement of
spatial resolution in the vicinity of cracks. Circles and solid lines represent
particles and cracks, respectively. Only particles around cracks are replaced
by smaller particles. In this figure, a two-step refinement is depicted.
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Fig. 3. Model set-up for numerical validation. White circles represent
receivers and the solid line represents the crack.
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Fig. 4. A snapshot of the horizontal displacement velocity calculated
by HPM.

118 Exploration Geophysics J. Takekawa et al.



discretise themodel in HPM, it is possible to use different sizes of
particles in a straightforward manner. Furthermore, because our
model does not require high velocity contrasts to define cracks,
this approach is as stable as FD modelling (Saenger et al., 2000).
Note that the time step should be decreased in accordance with
the minimum particle spacing for stable calculations.

In order to validate the accuracy of our strategy for
representing the shape of cracks, we conduct a numerical
simulation of seismic wave scattering induced by a single
crack. We use the result from a FD method with a rotated
staggered grid (FDM-RSG) as a reference solution because the
accuracy of FDM-RSGhas alreadybeenvalidated by comparison
with analytical solutions in Kruger et al. (2005). A numerical
model is shown in Figure 3. A single crack, with inclination
angle 30� and length 1.61 m, is embedded in the centre of
the model. Since the particle and grid spacing in HPM and
FDM-RSG are 2 mm, the crack is represented by more than
800 particles or grid nodes. The upper and lower boundaries of
the model are periodic boundaries. A plane P-wave is generated
at the right edge of the model, and propagates through the
model. We record the scattering waves induced by the crack
using a receiver array placed at the right side of the crack.
Figure 4 shows a snapshot of the disturbed wave field
calculated by HPM. We can observe that reflected P- and S-
waves are generated after the incident plane P-wave hit the crack.
Figure 5 shows the waveforms observed at the receiver array.
Each waveform agrees well with the reference traces, for both
vertical and horizontal components. This indicates that our

strategy can calculate scattering waves induced by the crack
accurately if we use a large number of particles to represent
the crack. The number of particles required to represent the crack
with sufficient accuracy is discussed in the next section.

Numerical results of effective wave velocities

Model set-up

We use numerical models as shown in Figure 6. The model has a
cracked region in the centre. The cracked region is 0.2m�0.2m,
and has randomly placed, randomly oriented, rectilinear, dry and
non-intersecting cracks. All cracks have the same length, i.e.,
2lk= 0.0061m, where lk represents the half-length of each crack.
The cracked region is set into a 2D isotropic elastic medium
with a P-wave velocity of Vp = 4000m/s, an S-wave velocity of
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Fig. 5. The waveforms recorded by the receiver array. Solid and dashed lines are the waveforms from
HPM and FDM-RSG calculations, respectively. The dotted line represents the difference between the
waveforms but the scale is amplified by a factor of 10. (a) Horizontal and (b) vertical displacement velocities.
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Fig. 6. Numerical model set-up for the calculation of effective velocities.
White triangles represent receivers.
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Fig. 7. Examples of crack distributions. The solid squares and solid lines represent the cracked regions and cracks,
respectively. (a) �= 0.05, (b) �= 0.10, (c) �= 0.20.
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Vs = 2310m/s, and a mass density of r= 2700 kg/m3. A plane
wave (P- or SV-wave) is incident from the right side of the
model and goes through the cracked region. We detect the
plane wave passing through the cracked region with a line of
receivers placed just to the left of the cracked region. The
source wavelet in our numerical experiments is the first
derivative of a Gaussian function with a dominant frequency
of 20 kHz. Therefore, the dominant wavelengths of the P- and
SV-wave in the homogeneous region are 0.2 m and 0.1155 m,
respectively. This means that our numerical conditions are
a good approximation to the long wavelength limit. The
background particle spacing is 0.001 m and the time step is
0.01ms. We apply periodic boundary conditions in the vertical
direction.

We describe the number of cracks in the cracked region with
the crack density parameter � defined by:

� ¼ 1
A
Sn
k¼1l

2
k ð15Þ

where A represents the area of the cracked region, and n the
number of cracks. Figure 7 shows typical examples of cracked
regions with different crack densities.

Figure 8 shows examples of the spatial-averaged waveforms
recorded at the receiver array for different crack densities. We
used 200 receivers to calculate the averaged waveforms. It can be

observed that the time delay of the peak of the spatial-averaged
waveforms increases with increasing crack density. Using this
time delay, we can estimate the effective velocity in the cracked
region.
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Fig. 8. Displacement waveforms calculated at the receivers for different
crack densities.
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Fig. 10. The definition of ‘nominal’ crack length KN and the ‘real’ crack length KR.
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Effective P- and SV-wave velocities

Figure 9 shows the numerical results of our effective velocities.
For comparison, the predictions of the effective velocities from
three of the theories described in the Introduction are also shown.
Six numerical experiments were conducted at each crack density
with different crack distributions. Note that it is difficult to detect
error bars in Figure 9b because the standard deviations are very
small. We refined the spatial resolution around cracks in two
steps, as in Figure 2. The effect of the level of refinement around
cracks on the effective velocity will be investigated in the next
section. In Figure 9, we observe the relative decrease in the
normalised velocities as a function of the crack density. For a
sparse crack distribution (e.g. �= 0.01), the numerical and three
analytical results are in good agreement with each other. This is
one of the arguments for the validity of our numericalmethod. For
a dense crackdistribution, on theother hand, our numerical results
for P- and SV-wave velocities are in good agreement with the
predictionsof themodified self-consistent theory.Wewill discuss
the validity of our results in response to the results of the next
section with comparison to the previous studies.

Effect of the ratio of the particle spacing
to the crack length

In this section, we examine the effect of the number of particles
per crack length. Fine spacing of particles improves the accuracy
of the calculation, but increases computational costs, i.e. memory
and CPU time. For both reasonable accuracy and computational
costs, it is important to ascertain the appropriate level of
refinement around cracks. The ratio of the crack length to the
particle spacing is defined by a parameter x:

x ¼ 2lk
Dx

ð16Þ

whereDx is the particle spacing around cracks. Incidentally, in the
previous section, the crack length and particle spacing around
cracks were 0.0061 m and 0.00025 m, respectively, so that the
parameter x was 24.4.

We also define the ‘nominal’ crack length KN and the ‘real’
crack lengthKR as shown in Figure 10. Since a crack is introduced
by cutting the connectivity between particles that intersect the
crack, the reproducibility of the crack length depends on the
spatial resolution aroundcracks. Ifweuse a coarse arrangement of

particles as in Figure 10a, the difference betweenKN andKR will
be larger than with the use of a finer arrangement (Figure 10b).
Therefore, refining the spatial resolution provides amore accurate
representation of the crack length. Furthermore, a fine particle
arrangement can reproduce significantly thin cracks, as is
assumed in the theories, more accurately than a coarse
distribution. To test these effects on the effective velocity, we
use a special arrangement of cracks as shown in Figure 11. Each
crack length is set to 0.002999 m and the regular background
particle spacing is set to 0.001 m. All cracks are aligned with the
regular particle lattice. In this case, both the crack length
measurements, KN and KR, are approximately the same. The
crack density � is fixed at 0.05 and the elastic parameters are also
the same as those in the previous section. We change the
parameter x from 3 to 48 by changing the particle spacing
around cracks and calculate the effective P-wave velocities of
the cracked media.

The calculation results for differentx are shown inFigure 12 as
filled circles. Each symbol is an averaged value over six model
realisations. The effective P-wave velocities are very slow
compared with the results of Figure 9 because all of the cracks
are perpendicular to the direction of the incident wave. The
calculated velocity decreases with an increase in x. Figure 13
shows the horizontal normal stress field around the cracks for two

Cracked region

Fig. 11. Crack distribution and crack alignment used for the demonstration of the effect of the
resolution around cracks.
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Fig. 12. Normalised effective velocities calculated for the special
arrangement as shown in Figure 11.
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different values of x. The incident wave propagates from right to
left. In both figures, the stress concentration can be observed
around the tips of the vertical cracks, but each case shows a
different degree of stress concentration. Since the coarse
arrangement of particles cannot reproduce the stress field at
the crack tips as accurately as a fine arrangement, the stress
fields just around the crack tips are quite different from each
other. This induces an artificial stiffness that results in larger
effective velocities, as indicated by previous studies (e.g. Dahm
and Becker, 1998). As we increase the number of particles
around the cracks, the results converge to a certain value.

Next, we change the crack length from 0.002999 m to
0.003001 m. In this case, the ‘real’ crack length KR is much
greater than the ‘nominal’ crack length KN when we use the
coarse particle arrangement. The distribution of cracks is the
same as in Figure 11. The calculated effective P-wave velocities
are shown in Figure 12 as open squares. The effective velocity
increases with an increase in x. When we set the crack
length to 0.003001 m, not only the effect of the difference
between KN and KR but also the effect of the artificial stiffness
is included in the model. Nevertheless, the effective velocity is
underestimated when we use coarse particles. This means that
the underestimation due to the difference between KN and KR

has a larger effect than the overestimation due to the artificial
stiffness. We note that the difference between KN and KR in this
model has a major influence on the underestimation because the
cracks are aligned with the regular latticed particle arrangement.
Using fine particles reduces the difference between the results
for this model and those for the model with a crack length of
0.002999 m. The difference in the normalised effective velocity
between the two cases is ~1.1% at x of 24.

In summary, a coarse particle arrangement acts to both
increase and decrease the effective velocity. In an arbitrary

arrangement of cracks, both randomly distributed and
randomly oriented, the effective velocity could be strongly
affected by both effects.

In order to demonstrate these effects in arbitrary
arrangements, we use the same model as shown in Figure 6.
The crack length is fixed at 0.0061 m. The particle spacing in the
non-cracked region is 0.002 m. The crack density � is fixed at
0.05. We make six different crack distributions for each
parameter x and averaged the results. The numerical result is
shown in Figure 14. It can be observed that the effective
velocity slightly increases with increasing parameter x. The
effective velocity is higher than what is shown in Figure 12 in
spite of the same crack density in the model. This is because the
cracks are not all aligned perpendicular to the direction of the
incident wave. The variation in the effective velocities with
respect to x in Figure 14 is smaller than that in Figure 12.
Since the coarse particle arrangement may act to increase or
decrease the effective velocity as described above, the
contributions could cancel each other out. These results
indicate that we can obtain a stable prediction of the effective
velocities using the average of values from several model
realisations. However, the standard deviation in the case of
low x remains high. In Figure 12, the difference in the
normalised effective velocity between the two cases decreased
to about 1% at a x of 24. This indicates that a fine particle
arrangement, with more than 20 particles per crack length, will
provide a stable prediction of effective velocities even with
extreme crack distributions like that shown in Figure 11.

Comparison to previous studies

In the previous section, we compared our numerical results
with several theoretical ones; the self-consistent theory, the

(a) (b)

Fig. 13. Snapshots of the horizontally normal stress field. (a) x= 3. (b) x= 24.
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theory for non-interacting cracks and themodified self-consistent
theory. The results of our P- and SV-wave velocities are in good
agreement with the predictions of the modified self-consistent
theory (Figure 9). In the self-consistent theory, the bulk and shear
moduli become negative and Poisson’s ratio exceeds 0.5 at high
crack densities. In the theory for non-interacting cracks, crack-to-
crack interactions are neglected. In contrast, the modified self-
consistent theory provides reasonable solutions for effective
properties lying in the physical range at high crack densities,
and does consider crack-to-crack interactions.

In previous numerical studies, numerical solutions for the
effective velocities using themodified self-consistent theorywith
FD simulations (Saenger and Shapiro, 2002; Saenger et al., 2004)
agreed well with solutions using boundary element and finite
element simulations (Dahm and Becker, 1998). Our results are in
good agreement with their conclusions. On the other hand, Davis
andKnopoff (1995), Grechka andKachanov (2006) andGrechka
(2007a) proposed that the interactions between cracks can be
neglected at high crack densities, and that the theory for non-
interacting cracks performs well. Furthermore, Grechka (2007b)
pointed out the ambiguity in the consistency and reproducibility
of FD simulations (e.g., Saenger et al., 2004), which stems from
the difference between the ‘nominal’ and ‘real’ crack lengths.
However, the effective velocity in Figures 12 and 14 converged to
a constant value asx increased.This indicates that thedefinitionof
the crack length does not have a large influence on the effective
velocity if we use enough particles per crack length. Thus, we
conclude that our results eliminated the ambiguity over the
definition of the crack length and support the correctness of
the modified self-consistent theory.

Conclusions

We have presented an application of HPM for calculating
seismic wave propagation and evaluating effective velocities
in cracked media. HPM has some advantages in representing
cracks inside the elastic media: (i) it is uncomplicated to
introduce free surfaces; and (ii) arbitrary spatial refinement is
possible in a simple and straightforward manner.

In order to investigate the effectiveness of the method,
we considered 2D isotropic cracked media. We predicted the
effective P- and SV-wave velocities and compared them with
values predicted by three different theoretical approaches. Our
results were in good agreement with the effective velocities from
the modified self-consistent theory. This was consistent with the
previous numerical studies conducted by the FD method, FEM

and the boundary element method. We also investigated the
influence of the ratio of crack length to particle spacing on the
effective velocity. The result indicated that we could obtain
stable results with values of more than 20 for the parameter x.

In this study, we placed limitations on the model styles, so
that cracksdidnot intersect eachother, andcrack lengthwasmuch
shorter than the wavelength. These restrictions were applied to
enable comparison with the theoretical results obtained under
similar conditions. In numerical studies, however, such
restrictions on crack intersections or wavelengths are not
necessary. Therefore, numerical experiments using HPM could
also support estimation of the effective velocities under
various conditions that are not available to most theoretical
approaches.
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