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ABSTRACT

A Hamiltonian particle method (HPM), which is one of
the mesh-free methods, can simulate seismic wavefields for
models including surface topography in a simple manner.
Numerical error caused by a curved free surface or by par-
ticles not aligned with the surface is not obvious in HPM. In
general, the accommodation of irregular free surfaces re-
quires more grids or particles in a minimum wavelength
for achieving sufficient accuracy in the simulation. We tested
the accuracy of HPM with staggered particles for simulating
seismic-wave propagation including the surface topography,
and we established the relationship between desired accu-
racy and spatial resolution. We conducted numerical simu-
lations for models with a planar free surface aligned with the
regular particle alignment and a dipping free surface. Our
accuracy tests revealed that the numerical error strongly de-
pends on the dipping angle of the slope. We concluded that
about 25 particles in a minimum wavelength are required to
calculate Rayleigh waves propagating along the irregular
topography with good accuracy. Finally, we simulated Ray-
leigh wave propagation along irregular topography using a
layered model with a hill. HPM can reproduce not only sur-
face-wave propagation but also the reflected and refracted
waves. Our numerical results were in good agreement with
those from a finite-element method. Our investigations in-
dicated that HPM could be a solution to simulate Rayleigh
waves in the presence of complex surface topography.

INTRODUCTION

Numerical simulations of seismic-wave propagation have been
widely used in many scientific and engineering fields, e.g., compu-
tational rock physics (Saenger and Shapiro, 2002; Quintal et al.,

2012; Takekawa et al., 2014a), scattering analysis of seismic waves
(Okamoto et al. [2013], for example), triggering effect of seismic
waves on an eruption (Lupi et al., 2013), estimations of strong
ground motion induced by earthquakes (Graves, 1996; Aochi et al.,
2013), etc. In many cases, finite-difference methods (FDMs) or fi-
nite-element methods (FEMs) have been used. In FDMs, the use of
staggered grids has been developed and contributed to the improve-
ment of the accuracy (Madariaga, 1976; Virieux, 1986) without sub-
stantial increase of the computational costs. Then, Saenger et al.
(2000) developed the use of rotated staggered grids (FDM-RSGs),
and traction-free boundary conditions could become implicitly ful-
filled with elastic parameters distributed in the midst of the grids
(Bohlen and Saenger, 2006). These approaches are simple and flex-
ible compared to the other explicit implementations. Koketsu et al.
(2004) develop a voxel FEM for introducing arbitrary topography
and generating a mesh structure faster than methods using the popu-
lar tetrahedral mesh. It is also simple to introduce surface topogra-
phy in the voxel FEM because FEM solutions satisfy the free-
surface condition directly. These techniques have provided accurate
and fast computations of the seismic-wave propagation including
arbitrary topography. Mercerat et al. (2006) apply a spectral element
method to reproduce a strong Rayleigh wave, a direct P-wave, con-
verted waves in a model with arbitrary topography and internal
material interfaces. Klin et al. (2010) use a pseudospectral method
for the numerical computation of the seismic waves in realistic 3D
geo-models. In their method, irregular topography is approximated
by a staircase of cubic cells. On the other hand, Kumagai et al.
(2011) apply an elastic lattice method (ELM) (Toomey and Bean,
2000; O’Brien and Bean, 2004) for simulating seismic wavefields
in heterogeneous media with topography. Numerical methods
dealing with the arbitrary-shaped free surface with as much accu-
racy as possible are necessary in the application of seismic-wave
propagation.
Recently, Takekawa et al. (2012) proposed a Hamiltonian particle

method (HPM) to calculate the strong ground motion induced by
earthquakes. Subsequently, Takekawa et al. (2014b) developed a
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staggered particle technique for HPM to improve the numerical ac-
curacy. In their methods, free surfaces are introduced after removing
or ignoring any particles above the surfaces.
In HPM, arbitrary-shaped free surfaces are also dealt with sim-

ilarly to formally proposed schemes such as FDM-RSG, ELM, etc.,
in a simple manner. It is important to control the numerical error of
HPM for models including arbitrary-shaped free surfaces for apply-
ing HPM to seismic-wave propagation. In general, the dispersion
analysis for a plane wave propagating through an infinite medium
is not sufficient for assessing the numerical error for dealing with
Rayleigh waves propagating along irregular free surfaces. This error
is induced by the spurious diffractions due to the stair-shaped grid
structures and the scattering of Rayleigh waves at small steps. Hay-
ashi et al. (2001) perform several numerical tests of FDM with an
irregular free-surface condition and investigate the required number
of grid points per wavelength. Bohlen and Saenger (2006) conduct
an accuracy analysis of FDM-RSG for simulating Rayleigh waves
along dipping planar slopes. Their analysis shows that the RSG can
simulate Rayleigh-wave propagation with higher accuracy than the
standard staggered grid. Tarrass et al. (2011) develop a new curvi-
linear scheme for modeling elastic wave propagation in the presence
of topography, and they perform a theoretical stability and
dispersion analysis of their scheme. Zeng et al. (2012) improve vac-
uum formulation for arbitrary free surfaces, and they compare their
results to those from a spectral element method using homogeneous
and heterogeneous models including topography. In this way, the
numerical error of such methods for models including arbitrary-
shaped free surfaces has to be well understood. However, the ob-
vious accuracy of HPM including surface topography has not been
well investigated yet. Because the features of HPM could allow us
to efficiently predict not only seismic-wave propagation in earth
models but also other applications such as in rock physical prob-
lems (e.g., Saenger and Shapiro, 2002), it is important to understand

the numerical error of HPM caused by irregular free surfaces for
obtaining adequate numerical solutions.
In this study, we conduct an accuracy analysis of HPM using

models, one with a dipping planar slope and the other with a fold
shape hill, to establish a relationship between the desired accuracy
and the spatial resolution. We first simulate Rayleigh waves propa-
gating along a horizontal planar free surface. Second, we employ
dipping planar slope models, which have different dips of a free
surface with respect to the regular alignment of particles, to inves-
tigate the accuracy of HPM in comparison with the analytical sol-
ution from the Cagniard-de Hoop method. Finally, we simulate a
seismic shot gather for the model with a hill to see the accuracy
of the method in comparison to the numerical solution from
FEM and to demonstrate the effectiveness of HPM.

METHOD

In the present section, we mention only the basic concept of
HPM with the staggered particles for simulating seismic waves.
Dispersion properties of HPM with staggered particles for a plane
wave are shown in Takekawa et al. (2014b). Figure 1 shows the
arrangement of main and subparticles. The variable locations of
HPM with staggered particles are similar to those of FDM-RSG.
The unique approach of HPM is a mesh-free concept of the theory.
The deformation gradient tensor at the main particles can be calcu-
lated by minimizing the error function as follows:

ei ¼
X
j

jFir0ij − rijj2wij; (1)

where ei is the error function to be minimized; Fi is the deformation
gradient tensor at the main particle i; r0ij and rij are the initial and
current position of subparticle j relative to main particle i, respec-
tively; and wij is the weighting function. In continuum dynamics,
the deformation gradient tensor F is defined as follows:

dx ¼ F · dX; (2)

where dX and dx are minute vectors in a continuum before and after
deformation, respectively (Figure 2). Then, equation 1 means that
the deformation gradient tensor at main particle i is estimated by a
weighted least-squares method.
We define the weight function as follows:

wij ¼
�
re∕jrijj − 1 ðjrijj ≤ reÞ

0 ðjrijj > reÞ ; (3)

where re is the radius of the influence domain. The summation of
equation 1 is calculated over the particles inside the influence do-
main. The interactions between particles are controlled by the in-
fluence domain. We can obtain the deformation gradient tensor as
follows:

∂ei∕∂Fi ¼ 2
X
j

ðFir0ij − rijÞ⨂ r0ijwij

¼ 2Fi

X
j

r0ij ⨂ r0ijwij − 2
X
j

rij ⨂ r0ijwij

¼ 0; (4)
where

Figure 1. Variable locations of HPM with staggered particles:
uiði ¼ x; zÞ and εijði; j ¼ x; zÞ are the displacement vector and
the strain tensor, respectively; λ; μ are the Lame’s constants; and
ρ is the density. The displacement vector is defined at the subpar-
ticles. On the other hand, the strain tensor is defined at the main
particles. The dotted circle represents the influence domain. The
main particle at the center has four subparticles inside its influence
domain with radius re.
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Fi ¼
X
j

rij ⨂ r0ijwijA−1
i ; (5)

Ai ¼
X
j

r0ij ⨂ r0ijwij; (6)

where a⨂bmeans the tensor product of vectors a and b. The strain
tensor, stress tensor, and the total elastic strain energy V can be cal-
culated as follows:

Ei ¼ ðFT
i Fi − IÞ∕2; (7)

Si ¼ 2μEi þ λtrðEiÞI; (8)

V ¼
X
i

ðSi∶EiΔBiÞ∕2; (9)

where Ei and Si are the strain and stress tensors at the main particle
i,ΔBi is the volume of the main particle i, trðEÞ is the trace of tensor
E, and S:E is the scalar product of tensors S and E.
Using the Hamiltonian equation, we can obtain the equation of

motion for each subparticle j:

Δmj∂vj∕∂t ¼ ∂V∕∂rj
¼

X
i

ðFiSiA−1
i r0ijΔBiwijÞ; (10)

where Δmj is the mass of subparticle j. We adopt a symplectic Eu-
ler scheme to equation 10 for updating the position vectors. Figure 3
shows a flowchart of the calculation process of the HPM.
The influence domain is one of the key factors to control the

numerical accuracy. Takekawa et al. (2012) indicate that a smaller
influence domain (compact support) provides
better accuracy than a larger one. However, it
could be that the number of connecting particles
is only one if an inclined slope is discretized in a
staircase pattern. Figure 4 shows the staggered
particle arrangement near the dipping free sur-
face. Main particles above the free surface are
removed. In Figure 4, the subparticle indicated
by an arrow has only one connecting main par-
ticle if we adopt a compact support. Therefore,
we set a larger influence domain to subparticles
at the corners of the steps to avoid this situation.
We note that this can be implemented in a simple
manner owing to the mesh-free concept of the
HPM. For subparticles located internally in the
model, the compact support is adopted as shown
in Figure 1. The effect of the radius of the influ-
ence domain will be investigated in Appendix A.

NUMERICAL RESULTS

Horizontal planar surface model

A classic Lamb’s problem is used to measure
the precision of the HPM in the propagation of
seismic waves (Figure 5). A free surface is
aligned with the regular latticed arrangement
of particles. The traction-free boundary condition

can be implemented by ignoring the influence of the outer surround-
ing particles in the HPM (Suzuki et al., 2007, Takekawa et al.,
2014a). The model is set into a 2D isotropic elastic medium with
a P-wave velocity of 3454 m∕s, an S-wave velocity of 1846 m∕s,
and a mass density of 2200 kg∕m3. A vertical force is applied to the
model. The applied waveform is a Ricker wavelet with a central
frequency of 40 Hz. The particle spacing Δx is 0.75 m, and the time
step is 5 × 10−5 s.
The numerical waveforms are compared with an analytical sol-

ution given by the method of Cagniard-de Hoop. To quantify the
relative difference between HPM seismograms and the analytical
solution, we define the misfit as follows:

Figure 2. Explanation of physical meanings of the deformation gra-
dient tensor: (a) a schematic figure of the deformation of a con-
tinuum and (b) change of the relative position associated with
translation of particles.

Figure 3. Flowchart of the process of algorithm implementation.
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misfit ¼
P

t ðSNUMðtÞ − SANAðtÞÞ2P
t ðSANAðtÞÞ2

; (11)

where SNUMðtÞ and SANAðtÞ are the numerical and analytical seis-
mograms, respectively. The misfit is calculated over the whole seis-
mogram. In general, a desired accuracy for forward modeling
depends on individual problems. It should be determined with re-
spect to each problem. In the present study, we define the desired
accuracy as a misfit ≤10%.
Figure 6 shows the vertical component of the displacement at the

four receivers with the misfits. The solid gray and dashed black
lines are analytical and numerical seismograms, respectively. Filled
circles at the right side of each seismogram represent the misfits
calculated by equation 11. Numerical results are in good agreement
with the analytical solutions. In this model, the number of particles
in a minimum wavelength is about 20 and the farthest receiver is
located at approximately 20 times the minimum wavelength. The
misfit at the farthest receiver achieves the desired accuracy. This
result indicates that less than 20 particles in a minimum wavelength
is sufficient to obtain good accuracy for flat surface models.

Dipping planar slope models

We next calculate seismic-wave propagation along a dipping pla-
nar slope. A free surface in this section is introduced by removing
particles above the free surface as shown in Figure 4. We change the
dipping angle θ of the slope from 0° to 90°. In this section, we use
only the farthest receiver whose offset distance is 300 m. The depths
of the source and receiver are 4.5 m. So, we can use the same ana-
lytical seismogram by rotating the loading direction and the record-
ing component becoming perpendicular to the orientation of the
slope. The particle spacing Δx and the time step are the same as
the previous ones.

Figure 7 shows the numerical seismograms of the vertical com-
ponent for different dipping angles. We show the Rayleigh wave
event only. The misfit is nearly symmetric around 45°. The misfits
increase drastically for dipping angles away from 0° and 90°. How-
ever, the misfit decreases near the dipping angle around 45°.
Here, we discuss the reason for the small misfit at 45°. Fuyuki

and Matsumoto (1980) indicate that the scattering of Rayleigh
waves could be substantial from relatively small steps compared
to the wavelength. We therefore check the wavefield around the free
surface for 30° and 45°. Figure 8 shows the displacement field

Figure 4. Introduction of a dipping planar free surface. Particles
above the free surface are removed. Open and filled circles are
the main and subparticles, respectively. The dashed line represents
the free surface.

Figure 5. Geometry of the horizontal planar surface model. The
seismic source and receivers are buried at a depth of 4.5 m. Four
receivers are used with a constant offset of 75 m. Inside the dotted
circle is shown the arrangement of the main and subparticles around
the free surface.

Figure 6. The seismograms of the vertical displacement for differ-
ent offset distance. The solid gray and dashed black lines are
analytical and numerical seismograms, respectively. The misfits
calculated by equation 11 are also shown as filled circles on the
right.
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perpendicular to the inclined free surface after 0.15 s. An arrow in-
dicates the propagation direction of the surface wave. The contour
scale is overaccentuated to visualize small-amplitude scattering
waves. In Figure 8a, scattered waves with small amplitude behind
the surface wave can be observed. In Figure 8b, on the other hand,
the scattering waves are not visible because the dipping angle of 45°
does not include the steps that generate the scattering waves. This is
the reason that the misfit is very small at 45°. A similar trend was
also reported in a previous study (Bohlen and Saenger, 2006).
We also calculate the surface wave propagation using FDM-RSG

to compare the misfit with that from the HPM. In FDM-RSG,
the material properties of the grid points above the free surface
are assigned the values of vacuum (i.e., VP ¼ VS ¼ 0 m∕s, ρ ¼
0.00125 kg∕m3). This approach allows us to implement arbi-
trary-shaped free surfaces without explicitly accounting for them.
We use the second-order spatial operator to avoid a reduction in
accuracy. Figure 9 shows the numerical seismograms of the vertical
component calculated by FDM-RSG. Compared to Figure 7, the
misfit at 0° and 90° is slightly smaller than those from the HPM.
This means that FDM-RSG has an advantage over the HPM if sur-
face topography is not considered. However, for dipping angles
away from 0° and 90°, the misfit increases significantly, although
the overall trend is similar to the result from the HPM. This indi-

Figure 7. The seismograms of the vertical displacement for differ-
ent dipping angles with misfits. The particle spacing Δx is 0.75 m.
The solid and dashed lines are analytical and numerical seismo-
grams, respectively. The misfits calculated by equation 11 are also
shown as filled circles to the right.

Figure 8. The snapshots of the displacement field perpendicular to
the free surface for (a) 30° and (b) 45°. Arrows indicate the propa-
gating direction of the surface wave.

Figure 9. The seismograms of the vertical displacement for differ-
ent dipping angles with misfits calculated by FDM-RSG. The de-
tails are the same as in Figure 7.

Figure 10. The seismograms of the vertical displacement for differ-
ent particle spacing with misfits. The particle spacingΔx is (a) 0.72,
(b) 0.69, and (c) 0.66 m. The details are the same as in Figure 7.
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cates that the HPM requires a lower number of particles for achiev-
ing similar accuracy than FDM-RSG.
To investigate the appropriate number of particles in a minimum

wavelength for achieving the desired accuracy, we calculate the
numerical waveforms with different particle spacing Δx. We refine
the spatial resolution ranging from 0.75 to 0.66 m. Figure 10 shows
the numerical seismograms and misfits. The misfit decreases gradu-
ally as the particle spacing decreases. For particle spacing of 0.66 m,
the misfits for all dipping angles achieve the desired accuracy (mis-
fit ≤ 10%). The appropriate number of particles in a minimum
wavelength for achieving the desired accuracy is between 23
(Δx ¼ 0.66 m) and 22 (Δx ¼ 0.69 m). Although the appropriate
number depends on the desired accuracy and propagation distance,
it could provide an indication of the determination of the spatial
resolution.

Hill model

We finally demonstrate the efficiency of the HPM with the stag-
gered particles using an anticlinal layered model whose surface
forms a sinusoidal hill as shown in Figure 11a. The geometric con-
figuration of the hill is a single wavelength of the trigonometric

function. This model will generate not only a surface wave but also
reflected and refracted waves, which are important in explorations
of oil and gas reservoirs. The steepest angle at the hillside of the hill
is about 45°. We set three receivers at the top, hillside, and foot of
the hill. The receivers are located on the free surface. The depth of
the seismic source is 4.2 m. The distance between the source and the
hill foot is 42 m. The vertical force is applied at the source position.
The source function is a Ricker wavelet with a central frequency of
40 Hz. The surface layer has a P-wave velocity of 3122 m∕s, an S-
wave velocity of 1500 m∕s, and a mass density of 2000 kg∕m3.
The lower layer, on the other hand, has a P-wave velocity of
4082 m∕s, an S-wave velocity of 2500 m∕s, and a mass density
of 2500 kg∕m3. In this case, the propagation distance of the Ray-
leigh wave from the source to the receivers A, B, and C is about 20,
28, and 35 minimum wavelengths distance, respectively. We set the
particle spacing and the time step to 0.42 m and 5 × 10−5 s, respec-
tively. According to the accuracy test in the previous section, this
numerical condition is expected to provide sufficient accuracy at the
receiver A whereas the accuracy at the receivers B and C would
suffer from the numerical dispersion due to the long-distance
propagation.
Figure 11b–11f shows the snapshots of the displacement in the

vertical direction after 0.1, 0.15, 0.2, 0.25, and
0.3 s. The surface wave runs up and down the
hill, and the waves are reproduced smoothly near
the free surface. The reflected and refracted
waves are generated when the seismic waves
reach the boundary. Trapped waves in the surface
layer can also be observed.
Figure 12 shows a single-shot record observed

at the free surface. The horizontal and vertical
axes are offset distance and two-way traveltime.
Many events form complex phases due to multi-
ply reflected waves. The interpretations of main
events are identified by dotted lines in the bottom
figure. The direct S-wave and surface wave arrive
almost at the same time as far as the hilltop. At
the other side of the hill, events of these two
waves separate from each other because of the
difference of the propagation path.
Because it is difficult to calculate analytical

solutions for models including arbitrary topogra-
phy, we use FEM to make reference solutions.
FEM can discretize models including arbitrary
free surfaces accurately by creating adaptive
numerical meshes.
Figure 13 shows the displacement seismo-

grams in the vertical direction at the three receiv-
ers A, B, and C. The solid gray and dotted
black lines are the results from FEM and
HPM, respectively. At the hilltop (receiver A),
a large amplitude can be observed because of
the simultaneous arrival of the direct S-wave
and surface wave. At receivers B and C, these
two phases separate from each other. Our
numerical seismograms are in good agreement
with those from FEM, although relatively high
error can be observed in part of the surface wave.
The misfits between HPM and FEM are 3.3%,

Figure 11. A schematic figure of a layer model with a hill (a) and the snapshots of the
vertical displacement field after (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, and (f) 0.3 s. The
seismic source is buried at a depth of 4.2 m near the hill foot. Three receivers are
set on the free surface.
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5.6%, and 10.9% at receivers A, B, and C, respectively. The rela-
tively high misfit at receiver C is mainly induced by the delay of the
arrival of the surface wave indicated by a broken circle. This is
caused by the long propagation distance between the seismic source
and the receiver C. The large misfit of receiver C meets our expect-
ation based on the accuracy analysis in the previous section.

CONCLUSION

HPM with staggered particles is a class of mesh-free numerical
methods. Because it is simple to introduce the traction-free boun-
dary condition in the HPM, the accuracy of the HPM for models
including irregular topography is investigated in this study using
the staggered particles in the simulation of seismic-wave propaga-
tion along planar free surfaces. The numerical accuracy suffers from
the dipping planar free surfaces, whereas the 45° slope provides
good accuracy. We compared the result with that from FDM-
RSG. The accuracy of FDM-RSG was slightly higher than the
HPM if the free surface was flat. However, for the dipping free sur-
faces, the HPM showed better agreement with the analytical solu-
tions than FDM-RSG.
Next, we investigated the required number of particles in a mini-

mum wavelength for achieving the desired accuracy, which was de-
fined as misfit ≤10% in the present study. Approximately 23
particles in a minimum wavelength are needed to achieve sufficient
accuracy (misfit ≤10%) for all dipping angles. For the simulation of
Rayleigh wave propagation for more than 20 minimum wave-
lengths distance, a larger number of particles would be required.
Although the desired accuracy would depend on individual prob-
lems, these relationships among the spatial resolution, propagation
distance, and numerical accuracy could help to determine the spatial
resolution for arbitrary models including topography.

We finally used a layered model with a hill to demonstrate the
effectiveness of the HPM for simulating not only Rayleigh wave
propagation along an arbitrary topography but also reflected and
refracted waves. We compared the waveforms calculated by
HPM with those from FEM. Our numerical results are in good
agreement with those from FEM.
Our results indicate that HPM with staggered particles could be

one of the solutions to simulate seismic waves including irregular
topography. The strong point of HPM is the simplicity of introduc-
ing free surfaces. There is no need for creating an adaptive mesh
structure like FEM. This would lead to a reduction of time for pre-
processing. On the grounds of the feature described above, appli-
cations of HPM are expected for not only the simulations of surface
waves but also computational rock experiments and seismic scatter-
ing analyses including fractures.

Figure 12. A single-shot record at the free surface. The dotted lines
in the bottom figure indicate main events in the record.

Figure 13. Seismograms of the vertical displacement at receivers A,
B, and C. The solid gray and dashed black lines are seismograms
from FEM and HPM, respectively. The misfits between FEM and
HPM are shown at the lower right corner of each seismogram.
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APPENDIX A

EFFECT OF THE INFLUENCE DOMAIN

In HPM, the numerical accuracy is affected by the radius of the
influence domain. Here, we test the effect of the radius on the
numerical accuracy. We double the radius of the influence domain
as shown in Figure A-1. In this case, the number of particles inside
the influence domain increases from 4 to 12. We calculate the sur-
face-wave propagation using the flat surface model shown in
Figure 5. Figure A-2 shows the vertical component of the displace-
ment at the four receivers with the misfits. Compared with Figure 6,
the misfits increase significantly. This trend corresponds with the
previous study (Takekawa et al., 2012); i.e., a larger support of
the influence domain increases the misfit. In FDM, higher-order
schemes (e.g., Levander, 1988) can be achieved by determining
the coefficients of the operator to make it cancel out higher order
error terms. The HPM, however, does not take the cancellation of
the error terms into consideration if the number of particles inside
the influence domain increases. The accuracy of the HPM depends

on the linearity of the deformation inside the influence domain
(equation 1). This means that the increment of the number of par-
ticles works against the improvement of the numerical accuracy be-
cause the linearity of the deformation inside the influence domain is
not held.
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