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1 A Hamiltonian Particle Method with a Staggered Particle Technique

2 for Simulating Seismic Wave Propagation
3

4 JUNICHI TAKEKAWA,1 HITOSHI MIKADA,2 and TADA-NORI GOTO
3

5 Abstract—We present a Hamiltonian particle method (HPM)

6 with a staggered particle technique for simulating seismic wave

7 propagation. In the conventional HPM, physical variables, such as

8 particle displacement and stress, are defined at the center, i.e., at the

9 same position, of each particle. As most seismic simulations using

10 finite difference methods (FDM) are practiced with staggered grid

11 techniques, we know the staggered alignment of space variables

12 could improve the numerical accuracy. In the present study, we

13 hypothesized that staggered technique could improve the numerical

14 accuracy also in the HPM and tested the hypothesis. First, we

15 conducted a plane wave analysis for the HPM with the staggered

16 particles in order to verify the validity of our strategy. The com-

17 parison of grid dispersion in our strategy with that in the

18 conventional one suggests that the accuracy would be improved

19 dramatically by use of the staggered technique. It is also observed

20 that the dispersion of waves is dependent on the propagation

21 direction due to the difference in the average spacing of the

22 neighboring two particles for the same parameters, as is usually

23 observed in FDM with a rotated staggered grid. Next, we compared

24 the results from the conventional Lamb’s problem using our HPM

25 with those from an analytical approach in order to demonstrate the

26 effectiveness of the staggered particle technique. Our results

27 showed better agreement with the analytical solutions than those

28 from HPM without the staggered particles. We conclude that the

29 staggered particle technique would be a method to improve the

30 calculation accuracy in the simulation of seismic wave

31 propagation.

32 Key words: Particle method, mesh-free method, computa-

33 tional seismology, seismic wave propagation, Lamb’s problem.

34

351. Introduction

36Seismic modeling techniques have been used for

37the predictions of strong ground motion caused by

38earthquakes (GRAVES 1996; KOMATITSCH and TROMP

391999; KOKETSU 2004; AOCHI 2013; NOGUCHI 2013),

40investigations in rock physics (SAENGER and SHAPIRO

412002; SAENGER 2011; MADONNA 2012), exploration

42seismology (GELIS 2005; ZENG 2012), etc. Because of

43the importance of seismic modeling, many numerical

44schemes have been developed in order to improve

45the numerical accuracy or the computational

46efficiencies.

47Among various schemes, the finite difference

48method (FDM) has been widely used for its accuracy

49and simplicity in the seismological field. MADARIAGA

50(1976) first applied a scheme based on staggered

51grids to solve dynamics of an expanding circular

52fault. VIRIEUX (1984, 1986) applied a staggered grid

53technique to simulate seismic wave propagation in

54order to improve the accuracy of FDM. In FDM with

55a staggered grid, the velocity and stress components

56are defined at two different sets of grid points stag-

57gered to each other. Later, SAENGER (2000) developed

58a rotated staggered grid method to calculate seismic

59wave propagation in arbitrary heterogeneous and

60anisotropic media. BERNTH and CHAPMAN (2011)

61analyzed and compared the accuracy and computa-

62tional requirements of various staggered grid

63schemes. Since these techniques improve the accu-

64racy without sacrificing the computational costs,

65many researchers and engineers are using these

66techniques.

67Recently, particle-based methods have also been

68applied to simulations of seismic wave propagation as

69an alternative to traditional continuum-based simu-

70lators. TOOMEY and BEAN (2000), DELL VALLE-GARCIA
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71 (2003) developed elastic lattice methods (ELM)

72 based on the distinct element method (CUNDALL and

73 STRACK 1979) for the seismic wave simulations.

74 TAKEKAWA et al. (2013) applied a moving particle

75 semi-implicit (MPS) method to the coupled simula-

76 tions of the seismic wave propagation and failure

77 phenomena. In ELM and the MPS method, the par-

78 ticle velocities or the displacements are defined at the

79 centers of the particle positions, whereas the inter-

80 action forces are defined at the middle positions

81 between the particles. (TAKEKAWA 2012) applied a

82 Hamiltonian particle method (HPM), originally

83 developed by SUZUKI and KOSHIZUKA (2008), to

84 numerical simulation of seismic wave propagation.

85 Their results show the applicability of the HPM to

86 simulate seismic wave propagation in an elastic

87 medium with an arbitrary-shaped free surface. In the

88 original HPM, however, either particle velocity or

89 displacement and stress components for every particle

90 are defined at the center of each particle. Although the

91 alignment of physical parameters at the same locations

92 in models could induce an artificial oscillation which

93 degrades the numerical accuracy, there are not many

94 publications for the discussion of such artifacts in the

95 application of HPM without sacrificing the computa-

96 tional costs. As KONDO (2010) developed a method

97 which introduces an artificial force, and dramatically

98 improves the accuracy of the HPM after a compromise

99 on the additional calculation and memory usage for

100 the artificial force for a problem of oscillation of an

101 elastic body, we await discussions on the accuracy and

102 the numerical efficiency of seismic wave propagation

103 simulation using HPM.

104 In the present study, we applied a staggered par-

105 ticle technique to the HPM for seismic wave

106 propagation in order to improve the accuracy and the

107 numerical efficiency. In our strategy, we define the

108 displacement and stress components at the different

109 positions similar to the other simulators using the

110 FDM. First, we explain the fundamental theory of

111 HPM with the staggered particle alignment. Then we

112 conduct plane wave analyses in order to confirm the

113 validity of our strategy. Finally, we test our numerical

114 method using homogeneous and inhomogeneous

115 models, and compare the results from the HPM with

116 those from the analytical solutions and another

117 numerical method.

1182. Method

119In this chapter, we explain the basic theory of the

120HPM and the staggered particle strategy. Figure 1

121shows the arrangement of particles. Black and white

122circles represent main- and sub-particles. At the

123main-particles, the strain and stress tensors are

124defined. On the other hand, the displacement, veloc-

125ity, and acceleration vectors are defined at the sub-

126particles. Each particle has an influence domain

127which defines the interacting particles around the

128particle. Interactions between particles described

129below are limited by the influence domain.

130In the HPM, the deformation gradient tensor is

131calculated by minimizing the error function ei as

132follows.

ei ¼
X

j

Fir
0
ij � rij

�

�

�

�

�

� ð1Þ

134134where F is the deformation gradient tensor, r0ij and rij

135are the initial and current position of sub-particle

136j relative to main-particle i, respectively. Subscripts

137i and j indicate main- and sub-particle, respectively.

138The summation in Eq. (1) is applied to the sur-

139rounding sub-particles inside the influence domain of

140main-particle i. Minimizing the error function derives

141the following equation for calculating the deforma-

142tion gradient tensor.

Figure 1
The staggered arrangement of the main- and sub-particles in the

present study
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Fi ¼
X

j

rij � r
0
ijA

�1
i ð2Þ

144144 Ai ¼
X

j

r
0
ij � r

0
ij: ð3Þ

146146 a� b means tensor product of vector a and b. The

147 strain tensor, stress tensor, and the total elastic strain

148 energy can be calculated using the deformation gra-

149 dient tensor.

Ei ¼ F
T
i Fi � I

� �

=2 ð4Þ

151151 Si ¼ 2lEi þ ktr Eið ÞI ð5Þ

153153 V ¼
X

i

Si : EiDBið Þ=2 ð6Þ

155155 where E, S and V are the Green–Lagrangian strain

156 tensor, second Piola–Kirchhoff stress tensor and the

157 total elastic strain energy, respectively. DBi is the

158 volume of main-particle i.

159 Using Hamilton’s equations, we can derive the

160 equation of motion for each sub-particle j.

Dmjovj=ot ¼ oV=orj ¼
X

i

FiSiA
�1
i r

0
jiDBi

� �

ð7Þ

162162 where Dmj is the mass of sub-particle j. The

163 summation in Eq. (7) is also applied to the

164 surrounding main-particles inside the influence

165 domain of sub-particle j. We show an explicit

166 expression of stress and displacement components

167 in Appendix.

168 3. Dispersion Analysis

169 We perform a plane wave analysis in order to

170 investigate the dispersion properties of HPM with the

171 staggered particles. Here, we assume that a plane

172 P-wave propagates along the horizontal axis in Fig. 2.

173 The model has a P-wave velocity of VP = 3,500 m/s,

174 and a mass density of q = 2,200 kg/m3. Particle

175 spacing Dx between main particles is 10 m. We

176 consider a plane wave of the form

u ¼ u0exp �ixt þ ikxð Þ ð8Þ

178178 where k is the wavenumber and x is the frequency.

179 We focus on the main-particle ‘‘a’’ in Fig. 2. If the

180 radius of the influence domain is set to the particle

181spacing, main-particle ‘‘a’’ interacts with sub-parti-

182cles ‘‘1’’, ‘‘6’’, ‘‘7’’ and ‘‘8’’. Substituting Eq. (8) into

183Eqs. (2) and (3) yields

Fa¼
1þ exp ikDxð Þ�1ð Þu0exp �ixtþ ikxð Þ=Dx 0

0 1

� �

:

ð9Þ

185185Equation (9) is the deformation gradient tensor for

186the main-particle ‘‘a’’. Inserting Eq. (9) into Eqs. (4)

187and (5), the stress tensor of the main-particle ‘‘a’’

188could be calculated as follows.

Sa¼
kþ2lð Þ 1þUð Þ2�1

n o

=2 0

0 k 1þUð Þ2�1
n o

=2

0

@

1

A

ð10Þ

190190where

U ¼ exp ikDxð Þ � 1ð Þu0exp �ixt þ ikxð Þ=Dx: ð11Þ

192192In a similar way, we can calculate the stress tensors

193for the main-particles ‘‘b’’, ‘‘c’’ and ‘‘d’’. Inserting the

194deformation gradient tensors and the stress tensors for

195the main-particles ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’ into

196Eq. (7), we can obtain the motion equation for the

197sub-particle ‘‘1’’ as follows.

Figure 2
The numbered main- and sub-particles for explaining the

dispersion analysis
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198 where

Dm ¼ qDB ð13Þ

200200 X ¼ exp ikDxð Þ � 1ð Þu0 exp �ixt þ ikxð Þ ð14Þ

202202 Y ¼ 1� exp �ikDxð Þð Þu0 exp �ixt þ ikxð Þ: ð15Þ

204204 Here, we assume that the particle spacing is much

205 larger than the amplitude of the incident plane wave.

206 Finally, the relationship between the wavenumber

207 and the frequency can be obtained

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 kþ 2lð Þ=qDx2
p

sin kDx=2ð Þ: ð16Þ

209209 Figure 3a shows the dispersion curve obtained by

210 Eq. (16). For comparison, we also show the disper-

211 sion curve for the HPM without the staggered

212 particles (TAKEKAWA 2012). As shown in Fig. 3a, the

213 staggered technique improves the dispersion property

214 dramatically.

215 Next, we investigate the dependence of the dis-

216 persion feature on the wave-propagating direction.

217 We rotate the incident direction of the plane P-wave

218 45� such that the plane wave propagates along the

219 broken line in Fig. 2. Under the same procedures, we

220 can obtain the dispersion relationship for the inclined

221 incident case as follows

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 kþ 2lð Þ=qDx2
p

sin kDx=
ffiffiffi

2
p� �

: ð17Þ

223223 Figure 3b shows the dispersion curves for the case of

224 the different propagating directions. The error for the

225 inclined incidence is larger than that of the horizontal

226 incidence. This feature of the dispersion curve is

227 similar to that of the FDM with the rotated staggered

228 grid (SAENGER 2000). This stems from the same rel-

229 ative positions between the points for the

230 displacement and the stress. In any case, our disper-

231 sion analysis revealed that the staggered particles

232 improve the accuracy of the HPM without additional

233 calculations like the artificial force.

2344. Numerical Examples

235In this chapter, we conduct numerical simulations

236of surface wave propagation using two models in

237order to demonstrate the effectiveness of our strategy.

238The first model has a flat free surface without a

239velocity contrast (i.e. homogeneous model). The

240second one is a basin model with a strong velocity

241anomaly around the free surface (i.e. inhomogeneous

242model). We calculate seismograms with and without

243the staggered particles for the verification of our

244strategy. We always use the artificial force (KONDO

Figure 3
Dispersion curves obtained by the dispersion analyses. a Compar-

ison of the result from the HPM with and without the staggered

particles. Dotted and broken lines are the dispersion curves with

and without the staggered particles. b The dependence of the

dispersion curves on the incident directions of the plane wave.

Dotted and chain lines are the dispersion curves of horizontal and

inclined incidence, respectively

�Dm1x
2u0 exp �ixt þ ikxð Þ ¼ kþ 2lð Þ X � Yð Þ=Dx2 þ 3 X2 � Y2ð Þ=2Dx3 þ X3 � Y3ð Þ=2Dx4


 �

DB

0

� �

ð12Þ
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F245 2010) stated in the introduction when the staggered

246 particles are not applied (i.e. the original HPM).

247 4.1. Homogeneous Model

248 Figure 4 shows our numerical model of a half-

249 space. The seismic source and receivers are located at

250 a depth of 100 m. The source function is a Ricker

251 wavelet with a central frequency of 4 Hz, and the

252 vertical force is applied at the source position. The

253 receivers are set at equal distances from the seismic

254 source, from 300 to 5,200 m. We set the model

255 boundaries well away from the source and receivers

256 in order to avoid the artificial reflection waves instead

257 of applying absorbing boundaries for the surrounding

258 areas.

259 The spatial and time spacing are set to 10 m and

260 1 ms, respectively. We studied two models, A and B,

261 of an elastic homogeneous and isotropic medium.

262 Themodel A has a P-wave velocity ofVP = 4,522 m/s,

263 an S-wave velocity of VS = 1,846 m/s, and a mass

264 density ofq = 2,200 kg/m3. Themodel B, on the other

265 hand, has a P-wave velocity of VP = 2,611 m/s, an

266 S-wave velocity of VS = 1,846 m/s, and a mass

267 density of q = 2,200 kg/m3. Models A and B have

268 Poisson ratios of 0.4 and 0.0, respectively.

269 We compare our numerical results with the

270 analytical solution of Lamb’s problem, and evaluate

271 the misfit by

misfit ¼
X

t

sNUM tð Þ � sANA tð Þ
� �2

=
X

t

sANA tð Þ
� �2

ð18Þ

273273 where sNUM tð Þ and sANA tð Þ are the numerical and

274 analytical seismograms, respectively.

275Figure 5 shows the snapshots of the displacement

276field in the vertical direction calculated by the HPM

277with the staggered particles after 2 s. In both models,

278we can observe the P-, S-, and Rayleigh waves.

279Figure 6 shows the vertical displacement seismo-

280grams at each receiver. Solid and dotted lines are

281analytical and numerical seismograms, respectively.

282Thick broken lines are the differences between the

283seismograms amplified by a factor 5. The misfits

284calculated by Eq. (18) are also shown at the right side

285of each seismogram. Both seismograms using the

286staggered particles have good agreement with the

287analytical ones. At the farthest station, the misfits are

288\2 and 4 % in models A and B, respectively. On the

289other hand, the seismograms without the staggered

290particles have larger errors compared to those with

Figure 4
Geometry of the seismic source and receivers in an elastic half-

space

Figure 5
The snapshots of the displacement field in the vertical direction

after 2 s for a model A, b model B using the staggered particles.

The contour is measured in meters

A staggered particle technique for HPM

Journal : Small 24 Dispatch : 16-1-2014 Pages : 11

Article No. : 763 h LE h TYPESET

MS Code : PAAG-1143 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Figure 6
Vertical displacement at the receivers for a model A with the staggered particles, b model B with the staggered particles, c model A without

the staggered particles, and d model B without the staggered particles. Solid and dotted lines are the analytical and numerical seismograms,

respectively. Dashed line is the difference between the seismograms amplified by a factor 5. Gray circles on the right side of the seismograms

represent the misfits calculated by Eq. (18)

Figure 7
The schematic figure of the inhomogeneous model. A low velocity zone which mimics the sedimentary basin is located at the right side of the

seismic source
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291 the staggered particles. This means that the staggered

292 particles can improve the accuracy of the simulations

293 of the seismic wave propagation.

294 Since the maximum modelled frequency in this

295 section is about 11 Hz, the number of particles in a

296 minimum wavelength of model B is about 14. As

297 shown in Fig. 6b, the misfit of the fourth receiver

298 from the seismic source is\1 %. This means that the

299 misfit of our method remains lower than 1 % for a

300 propagation of about 17 wavelengths. The required

301 accuracy depends on individual cases, and the misfit

302 increases with propagation distance due to numerical

303dispersion as shown in Fig. 6. Therefore, it is difficult

304to refer to the appropriate number of particles in a

305wavelength explicitly. The above relationship among

306the number of particles per wavelength, propagating

307distance and the observed misfit would be an

308indication for determining the appropriate particle

309spacing in individual cases.

3104.2. Inhomogeneous Model

311Figure 7 shows the schematic figure of the

312inhomogeneous model. A sedimentary basin, which

Figure 8
The snapshot of the displacement field in the vertical direction after a 2 s, b 3 s, respectively. The contour is measured in meters
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313 has lower velocities compared to the surrounding

314 rock, is located at the right side of the seismic source.

315 The sedimentary basin has a P-wave velocity of

316 VP = 2,700 m/s, an S-wave velocity of VS = 1,102

317 m/s, and a mass density of q = 2,000 kg/m3. The

318 surrounding rock, on the other hand, has a P-wave

319velocity of VP = 4,700 m/s, an S-wave velocity of

320VS = 2,878 m/s, and a mass density of q = 2,600

321kg/m3. The relative positions of the source and

322receivers are the same as the previous section. The

323source function is a Ricker wavelet with a central

324frequency of 3 Hz. Since the calculation of the

Figure 9
Vertical displacement at the receivers a with the staggered particles, and b without the staggered particles. Solid and dotted lines are the

FDM-RSG and HPM seismograms, respectively. Other details are the same as in Fig. 6.
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325 analytical solution to the arbitrary velocity model is

326 difficult, we use the finite difference method with the

327 rotated staggered grid (FDM-RSG), which allows the

328 method to include strong velocity contrasts without

329 explicitly accounting for them in the numerical

330 method (SAENGER 2000), in order to make referential

331 solutions. The grid spacing of the FDM-RSG is twice

332 as fine as that of the HPM for the accurate calcula-

333 tion. The Lame parameters above the free surface are

334 set to zero and the density close to zero for the

335 approximation of a vacuum. This approach can

336 represent the propagation of the surface wave with

337 sufficient accuracy (BOHLEN and SAENGER 2006). We

338 apply a second-order spatial operator because the

339 application of higher-order operators leads to numer-

340 ical errors due to the discontinuities of the seismic

341 wave field at the free surface.

342 Figure 8a, b show the snapshots of the displace-

343 ment field in the vertical direction calculated by the

344 HPM with the staggered particles after 2 and 3 s,

345 respectively. Trapped waves in the sedimentary

346 basin can be observed. Figure 9 shows the vertical

347 displacement seismograms with and without the

348 staggered particles. The results of the FDM-RSG are

349 also shown in the same figure as solid lines. The

350 waveforms become complex compared to those in

351 the previous section due to the velocity anomaly.

352 The results of the HPM with the staggered particles

353 have better agreement with those of the FDM-RSG

354 than those without the staggered particles. This

355 indicates that the staggered particles can improve

356 the accuracy if the model includes a strong velocity

357 contrast.

358 5. Conclusions

359 In the present study, we applied the staggered

360 particle technique to the HPM for simulating seismic

361 wave propagation. We first explained our strategy

362 and conducted the dispersion analyses for investi-

363 gating the validity of the staggered particles. The

364 results of the dispersion analyses showed the

365 improvement of accuracy by use of the staggered

366 particles. The dependence of the incident direction of

367 the HPM with the staggered particles is similar to that

368 of FDM with a rotated staggered grid. We then

369conducted surface wave propagation simulations with

370and without the staggered particles to verify the

371effectiveness of our strategy using the homogeneous

372and inhomogeneous models. Numerical waveforms

373of the HPM with the staggered particles showed

374better agreement with those from the analytical

375solutions than those without the staggered particles.

376The application of the staggered particles cuts out

377the need of calculations for the artificial force. This

378decreases the numerical costs, e.g. calculation time

379and computational memory. Therefore, our strategy

380improves not only the accuracy of the HPM, but also

381the numerical efficiencies.
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387Appendix

388We show an explicit expression of stress and

389displacement components. We assume that the par-

390ticle arrangement is shown in Fig. 2 and the distance

391of each particle in each direction is fixed to Dl. We

392focus on the main-particle ‘‘a’’ in Fig. 2. The defor-

393mation gradient tensor of main-particle ‘‘a’’ is

394expressed as below.

Fa ¼
X

j

raj � r
0
ajA

�1
a ¼

Fa11 Fa12

Fa21 Fa22

� �

Fa11 ¼ 1þ 1

2Dl
�u7x þ u8x þ u1x � u6x
� �

Fa12 ¼
1

2Dl
�u7x � u8x þ u1x þ u6x
� �

Fa21 ¼
1

2Dl
�u7y þ u8y þ u1y � u6y

� �

Fa22 ¼ 1þ 1

2Dl
�u7y � u8y þ u1y þ u6y

� �

ð19Þ

396396where u7x represents the displacement of sub-particle

397‘‘7’’ in the x-direction. Inserting Eq. (19) into Eq. (4),

398we obtain the strain tensor for main-particle ‘‘a’’ as

399follows.
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Ea¼
1

2
F
T
aFa�I

� �

¼
Ea11 Ea12

Ea21 Ea22

� �

Ea11¼
1

2Dl
�u7xþu8xþu1x�u6x
� �

þ 1

8Dl2
u7

2

x þu8
2

x þu1
2

x þu6
2

x

� �n

þ2 u7x �u8x�u1xþu6x
� �

þu8x u1x�u6x
� �

�u1x �u6x
� ��

þ 1

8Dl2
u7

2

y þu8
2

y þu1
2

y þu6
2

y

� �n

þ2 u7y �u8y�u1yþu6y

� �

þu8y u1y�u6y

� �

�u1y �u6y
� �o

Ea12¼
1

4Dl
�u7x�u8xþu1xþu6x�u7yþu8yþu1y�u6y

� �

þ 1

8Dl2
u7

2

x �u8
2

x þu1
2

x �u6
2

x

n

þ2 �u7x �u1xþu8x �u6x
� ��

þ 1

8Dl2
u7

2

y �u8
2

y þu1
2

y �u6
2

y

n

þ2 �u7y �u1yþu8y �u6y
� �o

Ea12¼E21

Ea22¼
1

2Dl
�u7y�u8yþu1yþu6y

� �

þ 1

8Dl2
u7

2

x þu8
2

x þu1
2

x þu6
2

x

� �n

þ2 u7x u8x�u1x�u6x
� �

þu8x �u1x�u6x
� �

þu1x �u6x
� ��

þ 1

8Dl2
u7

2

y þu8
2

y þu1
2

y þu6
2

y

� �n

þ2 u7y u8y�u1y�u6y

� �

þu8y �u1y�u6y

� �

þu1y �u6y
� �o

ð20Þ

401401 Inserting Eq. (20) into Eq. (5), the explicit expression

402 for the stress tensor can be obtained

Sa ¼ 2lEa þ ktr Eað ÞI ¼
Sa11 Sa12

Sa21 Sa22

� �

Sa11 ¼ kþ 2lð ÞEa11 þ kEa22

Sa12 ¼ 2lEa12

Sa21 ¼ 2lEa21

Sa22 ¼ kþ 2lð ÞEa22 þ kEa11:

ð21Þ

404404 The same calculations for the other main-particles

405 (‘‘b’’, ‘‘c’’, ‘‘d’’) are conducted to obtain the

406 deformation gradient and stress tensors. Applying

407 a symplectic scheme to Eq. (7), the following

408 update scheme for the sub-particle ‘‘1’’ can be

409 obtained.

unþ1
1 ¼ un1 þ

Dt

Dm1

�
X

i

FiSiA
�1
i r

0
1iDBi

� �

( )nþ1
2

ð22Þ

411411(i = ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’), where the superscript

412n means the time step. This simple updating scheme

413is a second-order symplectic integrator which can

414conserve the total energy with high accuracy.

415

416
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