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A B S T R A C T   

Seafloor hydrothermal deposits in the Okinawa Trough have been regarded as a modern analog of kuroko-type 
volcanogenic massive sulfide (VMS) deposits on land. VMS deposit is one of the primary producers of base metals 
(e.g. Cu, Pb, Zn) and precious metals (e.g. Au, Ag). However, owing to difficulties in accessing subseafloor 
samples/data without costly drilling operations, the spatial distribution of metal contents below the seafloor 
remains poorly constrained. We apply a combination of four spatial modeling methods: (1) principal component 
analysis; (2) k-means clustering; and (3, 4) conditional geostatistical simulations of turning bands and pluri- 
Gaussian. These modeling methods are based on the whole-rock geochemical data using inductively coupled 
plasma-quadruple mass spectrometry, together with lithologic log data obtained from onboard visual core de-
scriptions, and X-ray diffraction analyses from the middle Okinawa Trough, Izena Hole, during the cruise CK16- 
05 (Expedition 909) in 2016 by D/V Chikyu. The primary goal is to construct plausible 3D models for the contents 
of base metals and silver as well as lithotypes. The constructed models successfully map the configuration and 
zonation of subseafloor metal deposits with hydrothermal flow paths, which sheds light on hydrothermal cir-
culation systems and metal accumulation mechanisms. This approach is shown to be effective for geologic and 
mineralization modeling and exploration of (sub)seafloor hydrothermal deposits.   

1. Introduction 

Submarine mineral resources (e.g. seafloor massive sulfide (SMS) 
deposits, Fe-Mn nodules, Fe-Mn crusts, and REY (rare earth element- and 
yttrium)-rich muds) have attracted considerable economic interest as a 
new resource with particularly large resources (Kato et al., 2011; Hein 
et al., 2013; Masuda et al., 2014; Takaya et al., 2018). Seafloor hydro-
thermal deposits have been the focus of extensive research since the late 
1960 s particularly with regards to the relationship between 

distribution, mineralization mechanisms, and hydrothermal flux cycles 
(e.g. Degens and Ross, 1969; Hutchinson, 1973; Sawkins, 1976; Cox and 
Singer, 1986; Poulsen and Hannington, 1995; Herzig and Hannington, 
1995; Glasby and Notsu, 2003; Galley et al., 2007; Ishibashi et al., 2015) 
largely because SMS deposits may be future producers of Cu, Zn, Pb, Au, 
and Ag resources (Hannington et al., 2011; Shanks and Thurston, 2012; 
Singer, 2014; Juliani and Ellefmo, 2018a, 2018b, 2019). Although 
geological, geochemical, and geophysical data can be collected from the 
seafloor from dive surveys, the subseafloor structure, metallogenesis, 
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and metal element distributions of SMS deposits remain poorly under-
stood owing to difficulties involved with accessing subseafloor samples/ 
data without costly drilling operations. 

To address this problem and extract more information from sparse 
drilling data, we apply a combination of data-characterization methods 
using principal component analysis (PCA), k-means clustering, condi-
tional geostatistical simulations of turning bands (TBSIM), and pluri- 
Gaussian (PGSIM). A merit of TBSIM, which simulates the 2D or 3D 
domain by yielding a series of one-dimensional simulations along lines 
in Rn (Emery and Lantuéjoul, 2006), is its versatility and low CPU cost 
(Olea, 1999; Hunger et al., 2015; Marcotte, 2016). Its availability for 
SMS deposits was demonstrated in our previous study to delineate fea-
tures of subseafloor stockworks and strata-bound mineralization (de Sá 
et al., 2020). The effectiveness of PGSIM has been demonstrated to 
produce realistic geologic models with complex patterns by honoring 
stratigraphic rules, such as the relative positions and proportions of 
different lithotypes over a wide range (Mariethez et al., 2009; Armstrong 
et al., 2011). 

The primary goal is to construct plausible 3D models of geochemical 
compositions and lithotypes at the Hakurei Site, Izena Hole (Ishibashi 
et al., 2014; Totsuka et al., 2019; Morozumi et al., 2020; Nozaki et al., 
2021a) where the largest SMS deposit in the Okinawa Trough is used as a 
case field study (Fig. 1). SMS deposits in the Okinawa Trough have been 
considered a modern analog of kuroko-type volcanogenic massive sul-
fide (VMS) deposits on land (Halbach et al., 1989, 1993; Pirajno, 2009; 
Ishibashi et al., 2015; Nozaki et al., 2016). We use whole-rock 
geochemical data of drill core samples together with lithological infor-
mation based on onboard visual core descriptions and X-ray diffraction 
(XRD) analyses at six drill sites obtained from the cruise CK16-05 
(Expedition 909) in 2016 by D/V Chikyu (Nozaki et al., 2021b). 
Whole-rock geochemical data are determined by inductively coupled 
plasma-quadrupole mass spectrometry (ICP-QMS) using the 
HF-HNO3-HClO4 acid digestion method (Takaya et al., 2018). To 
compensate for the sparse geochemical data, a seismic profile (Fig. 1d) is 
incorporated to interpret the subseafloor geologic structure. 
Kuroko-type VMS deposits on land are well-studied analogs of SMS de-
posits and can provide useful information, particularly 3D studies of the 
Hokuroku District in northeast Japan (e.g. Cathles, 1983; Date et al., 
1983; Eldridge et al., 1983; HemIey et al., 1980; Ishikawa et al., 2004; 
Ohmoto, 1996; Ohmoto and Takahashi, 1983; Singer and Kouda, 1988), 
which are also referred for the model interpretations. 

The constructed models are then used to identify subseafloor hy-
drothermal fluid flow systems and accumulation mechanisms of major 
metal elements. This study is the first comprehensive application of the 
proposed geostatistical approach to modern SMS deposits to better un-
derstand the subseafloor distribution of metals. 

2. Materials 

2.1. Geologic setting 

The Okinawa Trough is located in a back-arc basin, behind the 
Ryukyu Arc along the eastern margin of the Eurasian continent, which 
runs > 1200 km from Kyushu Island to Taiwan (Fig. 1a). The Okinawa 
Trough is regarded to be in the nascent stage of back-arc basin forma-
tion, namely, continental rifting prior to steady seafloor spreading, with 
an inferred extension rate of 23–46 mm/year (Hirata et al., 1991; Arai 
et al., 2017). 

The Okinawa Trough is divided into northern, middle, and southern 
regions that are separated by the Tokara Strait and Kerama Gap at ~ 
130◦E and 127◦E (e.g. Sibuet et al., 1987). The northern Okinawa 
Trough consists of several half-grabens covered by thick terrigenous 
material layers up to 8 km thick from the Yangtze and Yellow rivers in 
China, whereas the sedimentary cover ranges up to 2 km in the southern 
Okinawa Trough (Sibuet et al., 1987). The middle Okinawa Trough has 
received varying sedimentary supplies from those rivers, and their 

deposition rate has increased considerably over the past 0.5 Ma (Sibuet 
et al., 1987). 

The Okinawa Trough is marked by volcanism with a bimodal 
basaltic-rhyolitic suite, accompanied by minor intermediate rocks (Ish-
ikawa et al., 1991; Shinjo and Kato, 2000; Yamasaki, 2017, 2018). In the 
northern Ryukyu Arc, active volcanoes dominantly consist of andesitic 
rocks that define the volcanic front continuing from the Kyushu Island 
(e.g. Nakada, 1986; Shinjo and Kato, 2000). This volcanic front becomes 
unclear around the middle Okinawa Trough. The bimodal volcanic ac-
tivity, which is typically associated with areas in rift zones (e.g. Martin 
and Piwinskii, 1972), in the middle Okinawa Trough is thus interpreted 
as transitional volcanism from arc to back-arc (Sibuet et al., 1987) or 
overlapping volcanism that occurred synchronously with that in the arc- 
trench system (e.g. Shinjo et al., 1999). The active volcanism results in 
vigorous seafloor hydrothermal activity in the middle Okinawa Trough 
(e.g. Glasby and Notsu, 2003). This activity formed sulfide/sulfate 
chimneys and mounds composed of sphalerite, galena, anhydrite, gyp-
sum, and barite, as well as pyrite, chalcopyrite, marcasite, and/or 
tetrahedrite-tennantite with minor amounts of other minerals (Halbach 
et al., 1989, 1993; Nakashima et al., 1995; Ueno et al., 2003; Watanabe 
et al., 2006; Suzuki et al., 2008; Ishibashi et al., 2015; Nozaki et al., 
2016, 2021a,b). 

The study area, Izena Hole, is located in the middle Okinawa Trough 
and is a caldera-like seafloor depression in a rectangular shape of about 
6 × 3 km with a maximum depth of 1660 m below sea level (mbsl) 
(Fig. 1b). Its floor is covered by up to 30 m of hemipelagic, unconsoli-
dated silty clays (Ishibashi et al., 2015; Nozaki et al., 2018; Yamasaki, 
2018). This depression is composed of unconsolidated sediments with 
sulfide-rich layers, tuff breccias, pumice exposed on the seafloor slopes, 
and a center cone-like small knoll of dacitic lava at the hole center 
formed by recent magmatic activity in which several normal faults 
trending E-W or ENE-WSW, parallel to the rifting axis of the middle 
Okinawa Trough, are distributed (Kato et al., 1989, 1990; Glasby and 
Notsu, 2003). There are two hydrothermal fields in this location: the 
JADE site (Halbach et al., 1989) in the northeast and the Hakurei Site 
(Maeda, et al., 1996; Morozumi et al., 2020) in the south accompanying 
active vents (or chimneys) (Fig. 1b) resulting from hydrothermal cir-
culation on both large and small scales induced by a shallow heat flow 
source and controlled by faulting (Kinoshita and Yamano, 1997; Ishi-
bashi et al., 2015). The Hakurei Site is known to be rich in Zn and Pb 
with polymetallic mineralization (Zn-Pb-Cu-Ag-Au with trace metal as-
sociation) (Japan Oil, Gas and Metals National Corporation, 2013, 2016; 
Morozumi et al., 2020) of a kuroko-type VMS deposit. According to 
these references, the hydrothermal activity in the Hakurei Site extends 
over 500-m long from west to east, which is verified by a complex 
chimney structure with discharge of vigorous high-temperature fluids 
up to 326 ◦C in the vicinity of Dragon chimney (Ishibashi et al., 2014, 
2015) (Fig. 1c). 

2.2. Sample data for analysis 

We chose a 700 × 200 m area (red box in Fig. 1b and 1c) in the 
Hakurei Site where six sites (I to VI) were drilled along approximately 
the E-W direction (Fig. 1c) with different depths of 72.5 m below sea-
floor (mbsf) (I), 46.5 mbsf (II), 180.0 mbsf (III), 120.5 mbsf (IV), 80.0 
mbsf (V), and 80.5 mbsf (VI). Drill site I at the western edge was drilled 
from the top of a sulfide mound. A combination of the whole-rock 
geochemical compositions in the drilling core samples (ppm or wt.%) 
measured by ICP-QMS and lithological log data from onboard visual 
core descriptions were used for the spatial modeling. The target ele-
ments of ICP-QMS measurements for 454 samples were Na, Mg, Al, P, K, 
Ca, Sc, Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sn, 
Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, 
Ta, W, Au, Tl, Pb, Bi, Th, and U. Sampling intervals along the drill hole 
depth direction ranged from 0.23 to 19.03 m with an average interval of 
1.22 m. Intervals longer than 10 m were made owing to the poor core 
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Fig. 1. Location of study area. (a) Tectonic setting of the Okinawa Trough in the East China Sea. (b) Topography of the Izena Hole with representative active 
hydrothermal vents marked by yellow stars with a distribution trend of large heat flow traced by a black line (Kinoshita and Yamano, 1997; Ishibashi et al., 2015). (c) 
Detailed topography of the study area with six drilling sites (I to VI) in which the red box represents the geostatistical modeling zone. (d) Seismic profile with 
interpretation of lithotypes and fault location (Asakawa et al., 2018). (e) Conceptual geologic model showing lithotype distribution produced from the drill hole 
lithotype data and the seismic profile. The locations of E-W seismic profile and conceptual geologic model are shown by red and black lines in (c), respectively. 
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recovery rate. When two samples were located within a short distance 
(10–20 cm) along a hole depth, the deeper sample was selected to unify 
lag distance of the semivariogram calculation. The two targeted samples 
have similar bulk geochemical compositions with elemental differences 
as small as 1%–2%. As a result, 454 samples were selected out of the 
original 462 samples. 

On the basis of geologic descriptions for minerals, granulometrics, 
and texture characteristics, we classified and ultimately simplified the 
247 geologic column data into four major lithotypes with common 
characteristics for geostatistical analyses: primary and reworked sedi-
ment, i.e. underwater debris flow deposit with pumiceous sediment 
(percentage of grouped samples out of the total samples: 43.3%), sulfide 
rock (29.2%), weakly/moderately altered rock (9.7%), and pervasively 
altered rock (17.8%). The definition of these lithotypes was based on the 
above-mentioned onboard visual core descriptions and X-ray diffraction 
analyses. 

The first lithotype includes a mixture of hemipelagic sediment and 
various sizes of pumice blocks, turbidite, and laminated hemipelagic 
sediment with little or no hydrothermal alteration. Sulfide rock is 
dominated by sulfide minerals with barite and minor gangue minerals, 
weakly/moderately altered rock is composed of > 25% hydrothermally 
altered clay minerals, and pervasively altered rock is composed of >
90% of hydrothermally altered clay minerals. Weakly/moderately 
altered rocks and sulfide rocks are composed of primary minerals of 
quartz ± calcite ± albite with secondary montmorillonite ± illite ±
chlorite ± K-feldspar ± dolomite ± kaolinite ± anhydrite ± pyrite and 
sphalerite + galena + barite + pyrite + marcasite ± chalcopyrite ±
pyrrhotite ± cubanite, as determined from onboard X-ray diffraction 
analyses (Nozaki et al., 2018). Chalcopyrite is conspicuous in the sam-
ples from drill sites I and II and becomes progressively rare toward the 
eastern drill site V. Pyrite is present in both lithotypes but less abundant 
in the weakly/moderately altered rocks. 

2.3. General geological structure 

Geologic structures below the seafloor are inferred from seismic 
profiles obtained from reflection surveys in an area covering four drill 
sites (III to VI) (Fig. 1d). This profile outlines a stratiform layer with a 
high-velocity anomaly that likely hosts sulfide rocks and weakly/ 
moderately altered rock. These stratified zones are regarded to be 

strongly deformed and act as pathways for hydrothermal fluids (Asa-
kawa et al., 2018). Another important structure observed from the 
seismic profile is the development of a fault between drill sites V and VI 
in the deepest part to the seafloor. 

A conceptual geologic model is produced using the seismic profile 
survey and drill site lithotype (Fig. 1e) by referring to previous models in 
a similar geologic setting in the Okinawa Trough (Glasby and Notsu, 
2003; Ishibashi et al., 2014, 2015). Apart from the westmost sulfide 
mound, the top layer consists of primary and reworked sediments with 
variable sizes of pumice fragments by a mixing of underwater debris 
flows from the surrounding slopes and hemipelagic sediments (Nozaki 
et al., 2018; Yamasaki, 2018). 

3. Methods 

The methods in this study consists of pre-processing of the content 
data using the centered log-ratio (clr) transformation, statistical 
methods using PCA to decrease the dimensionality of the content data 
and k-means clustering to classify content data into several groups with 
similar mineral assemblage trends, and two geostatistical and condi-
tional simulations, turning bands simulation (TBSIM) and pluri- 
Gaussian simulation (PGSIM), to implement spatial modeling of 
geochemical composition and categorical data (either lithotypes or 
cluster numbers generated by k-means method), respectively. The flow 
of total analyses using these methods is summarized in a flowchart 
(Fig. 2). 

3.1. Data pre-processing 

The content data of various elements are regarded as multivariate 
dataset. Because the content ranges are largely element-sensitive, 
appropriate data pre-processing is necessary to standardize each 
value. Special caution is required for standardization because incorrect 
methods can distort covariance, which changes the actual strengths of 
relationships between variables (Davis, 2012). The covariance matrix is 
essential in PCA. As a standardization method, we adopt the clr trans-
formation that can remove spurious negative correlations between 
compositional variables (Aitchison and Greenacre, 2002), although such 
negative correlations are generally an issue for major elements such as 
Si, Al, and Ca, which are not used in this study. In this method, the 

Fig. 2. Flowchart showing flows of data analyses composed of pre-processing of the content data using the centered log-ratio transformation, statistical methods 
using PCA to decrease the dimensionality of the content data and k-means clustering to classify content data into several groups with similar mineral assemblage 
trends, and geostatistical spatial modeling using turning bands simulation for geochemical composition and pluri-Gaussian simulation for categorical data (either 
lithotypes or cluster numbers generated by k-means method). 
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content data of a certain element from a sample, xi, is transformed into 
log data using the geometric mean (gD) according to: 

clr(xi) = ln
xi

gD(x)
(1)  

gD =

(
∏m

j=1
xj

)1
/m

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x1. x2…xm

m
√

(2)  

where m is the number of elements. The suitability of clr transformations 
to derive a reliable covariance matrix for PCA has been demonstrated in 
several previous case studies (e.g. Aitchison, 2002a, 2002b; Pawlowsky- 
Glahn and Olea, 2004; Carranza, 2011; Pawlowsky-Glahn et al., 2015). 

3.2. Statistical methods 

The clr-transformed data are then used for PCA and clustering. PCA 
has been widely applied to distinguish geochemical anomalies in 
exploratory data (e.g. Dempster et al., 2013; Shahi, 2017). The dimen-
sionality of the content data is decreased by linearly combining elements 
with similar variances and chemical similarities, which may contribute 
to the identification of highly mineralized zones. The new variable 
generated by the linear combination is termed principal component 
(PC). 

K-means clustering aims to classify content data by examining the 
dependence of geochemical compositions on lithotype. Its effectiveness 
has been demonstrated in several previous case studies (e.g. Iwamori 
et al., 2017; Zhou et al., 2018). This method is expected to supplement 
the subjective and qualitative geological interpretations and assist in the 
consideration of content characteristics by correlating elemental con-
centrations with lithotype. 

3.3. Geostatistical methods 

TBSIM overcomes drawbacks of the simulation method that 
sequentially draws a value at each simulation point from a conditional 
distribution given by the previously simulated data and values (Chilès 
and Delfiner, 2012). Although the sequential method has been used 
widely in geologic, hydrogeologic, and environment applications to 
characterize unsampled values of regionalized attributes (Emery and 
Lantuéjoul, 2006), it may produce a biased result by error propagation 
with the use of moving neighborhood data for successive conditional 
simulations. On the contrary, the non-conditional simulation step in 
TBSIM can reduce such errors, and all realizations can be converted into 
conditional data by a kriging calculation. 

In addition, PGSIM based on the truncated Gaussian method 
(Matheron et al., 1987) is known to be well suited for simulating 
geological configurations by organizing lithotypes into sedimentary 
sequences and vertical and horizontal interfingering relationships 
(Armstrong et al., 2011; Delfiner and Chilès, 2012). PGSIM is achieved 
by simulating two or more Gaussian variables at every point in the 
domain and honoring the lithotype rule regarding the proportions and 
contact among the lithotypes and by converting the variables into lith-
otypes (Armstrong et al., 2011; Delfiner and Chilès, 2012). PGSIM can 
reproduce a lithotype ordering relationship by conditioning both the 
semivariograms and vertical proportion of each lithotype (Armstrong 
et al., 2011; Pyrcz and Deutsch, 2014). The resultant geologic modeling 
is therefore more realistic than a straightforward semivariogram-based 
simulation of categorical variable modeling, typically sequential indi-
cator simulation (Journel, 1983; Journel and Alabert, 1988; Deutsch and 
Journel, 1998), which constrains only the spatial continuity of each 
category. 

For both models, the study area was gridded by voxels of a unit size 
of 10 m along the X-axis (E-W), 10 m along the Y-axis (N-S), and 0.4 m 
along the Z-axis (depth direction). The horizontal size was set to 
consider the nugget effect and data range of the semivariograms. The 

vertical size was determined by considering the average interval of 
neighboring sampling points along the drill sites to capture subtle 
changes in content or lithotype. The bottom location of the longest drill 
site (III) was used as the bottom boundary of the modeling domain. 
Because the lithotype data of drill site VI were mostly homogenous 
except for the deepest core, PGSIM was targeted from the western edge 
to the fault location (Fig. 1d). 

3.3.1. Turning bands simulation (TBSIM) 
TBSIM was implemented to delimit highly mineralized zones with 

high metal contents using the PC values. The TBSIM principle and al-
gorithm are described in detail in several references (Olea, 1999; Emery 
and Lantuéjoul, 2006; Chilès and Delfiner, 2012). Unlike common 
covariance-based direct simulations in Rn, TBSIM is basically a 1D 
simulation on a line, which requires two steps: (i) unconditional simu-
lation using spatial covariance function of the data on a line and (ii) 
conditioning correction to connect the simulated value at a data location 
with the data value by simple kriging. Let kriged values at location u 
using the sample data and unconditional simulated data be y*

kc(u) and 
y*

ku(u), respectively. The conditional realization yl
CS(u) is formulated 

using the unconditional realization yl
uc(u)and following equation (Pyrcz 

and Deutsch, 2014): 

yl
CS(u) = yl

uc(u)+
{

y*
kc(u) − y*

ku(u)
}

(3) 

TBSIM performance depends on the number of lines and how to 
simulate one-dimensional random field at the first step (Paravarzar 
et al., 2015). Although TBSIM can reproduce the covariance model 
without bias regardless of the number of lines, hundreds of lines at each 
voxel are recommended for three-dimensional modeling (Emery and 
Lantuéjoul, 2006). We then set 1000 lines and executed only one real-
ization on each line. The TBSIM result is shown as an e-type model by 
averaging 100 realizations. 

3.3.2. Pluri-Gaussian simulation (PGSIM) 
PGSIM has been used for categorical and non-numerical data, such as 

lithotype. The spatial models of lithotype and cluster number by k- 
means were produced by PGSIM. Fig. 3 schematically illustrates the 
following five steps.  

(I) Data input: a categorical variable (lithotype or cluster number) ik 
takes a value of 1 if the category k is present or 0 otherwise.  

(II) Production of vertical proportions curves: vertical proportions 
are computed along lines parallel to a chosen reference level, 
which is generally a chrono-stratigraphic marker. We chose the 
sulfide rock layer as the main level owing to its significant pres-
ence. The proportion curves tend to vary laterally and vertically 
in a study domain. Such non-stationary phenomena originate 
from geologic heterogeneity-fluctuating semivariograms. Use of a 
3D matrix of proportion curves can smooth the fluctuation, as 
demonstrated in detail in Armstrong et al. (2011).  

(III) Definition of the lithotype rule and semivariogram fitting: the 
lithotype rule is a diagram that defines contact relationships at 
the boundary of different lithotypes. When the indicator variables 
are in contact with the lithotype rule diagram, the corresponding 
variables are connected in the simulation. The transitions of the 
indicator variables follow the transition statistics composed of 
two probability matrices (downward and upward) showing the 
vertical downward and upward transition frequencies between 
indicator variables along drill sites (Armstrong et al., 2011). In 
addition, two Gaussian random functions, G1 (horizontal axis) 
and G2 (vertical axis), independent of one another are generated 
and truncated to yield four categorical variables for the case 
shown in Fig. 3. The area of each lithotype in G1 and G2 is equal 
to its proportion (Delfiner and Chilès, 2012). The semivariogram 
models of G1 and G2 are determined by repeatedly changing the 
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ranges as follows. An unconditional pluri-Gaussian simulation is 
first executed by defining the type and parameters of the semi-
variogram models. A least-square gradient-based minimization 
algorithm is then used to update the semivariogram models so 
that they match with the experimental semivariograms (Mar-
iethoz et al., 2009).  

(IV) Conditioning drill site data: A Gibbs sampler algorithm was used 
to iteratively re-simulate the Gaussian fields for reconstructing 
both the semivariograms model and constraints (Armstrong et al., 
2011; Chilès and Delfiner, 2012).  

(V) Simulation execution: TBSIM was used to simulate each Gaussian 
variable. The simulation result must reproduce the main features 
contained in the drill site data, semivariograms, and proportions 
of each lithotype. 

As easily inferable, the one lithotype rule is insufficient to simulate 
complicated formation structures. The study domain was then divided 
into subzones on the basis of the TBSIM results. PGSIM was individually 
applied to each subzone unit and their results merged. 

4. Results and discussion 

The following results were obtained using the clr-transformed 

content data, expressed, for example, as Zn* for the original data Zn. 

4.1. Data selection and grouping of metals by principal component 
analysis 

Because many elements (52) were measured for the bulk-rock 
geochemical compositions, we first selected elements that were essen-
tial for characterizing a SMS deposit using a loading plot (Fig. 4a). The 
horizontal and vertical axes of this circle show that PC1 and PC2 
respectively highlight significant elements that are correlated with one 
another by the (i) line length from the circle center and (ii) angle be-
tween two lines of an element pair. The elements with longer line 
lengths are more essential because of their large loadings. The elements 
contained within highly mineralized zones, generally include Zn*, Pb*, 
Cu*, Ba*, Cd*, and Ag*, and were observed to have large PC1 loadings. 
The by-product elements of hydrothermal activity, Sn* and Mn*, show 
low PC1 loadings and large PC2 loadings. Significant positive correla-
tions between a pair are identified by small angles, no correlation by 
right angles, and significant negative correlation by point symmetry (i.e. 
two elements are located on opposite sides). Eight elements, Zn*, Pb*, 
Cu*, Ag*, Ba*, Cd*, Mn*, and Sn*, were selected as highly correlated 
variables and used for the subsequent PCA analysis. Among them, base 
metals Zn*, Pb*, and Cu* are the most strongly correlated because their 

Fig. 3. Schematic workflow of a pluri-Gaussian simulation with an example of four lithotypes from Armstrong et al. (2011). G1 and G2 represent two Gaussian 
random functions. 

Fig. 4. (a) Loading plot showing elemental correlations of centered log-ratio transformed content data. Only correlated elements are displayed. PC1 and PC2 denote 
the two first principal components (PCs). (b) Eigenvalues of PCs (lines) and percentage of each eigenvalue to the total variance (bars). 
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two-pair angles are substantially smaller than the other pair angles. 
The eigenvalues and contributions to the total variance of each PC 

(PC1–PC8) are shown in a scree diagram (Fig. 4b), which shows that 
most information is retained in PC1 by its particularly large variance 
(73.0%). PC2′s variance is 12.3% and the sum of the variances from PC3 
to PC8 is as small as 14.7%. Therefore, only PC1 and PC2 were selected 
for TBSIM to locate high-metal-content zones and interpret the sulfide/ 
sulfate mineralization process. 

4.2. Characterization of metal assemblage by clustering 

The eight elements were classified into four clusters by k-means 
because this number of groups was the most suitable to discriminate the 
difference in metal assemblages among the clusters, as shown by a biplot 
of PC1 and PC2 (Fig. 5a). The differences of clusters are characterized by 
the difference in signs of PC1 and PC2. For example, the signs of PC1 and 
PC2 are generally in clusters 1 (-, +), 2 (-, -), 3 (+, +), and 4 (+, +), and 
the difference in PC1 values are located the farthest in clusters 2 and 3. 
Cluster 1 is the most representative, including 75% of the 454 samples, 
whereas cluster 2 is the smallest with only 3% (Fig. 5b). With regards to 
the relationship between lithotype and cluster (Fig. 5c), lithotype mix-
tures appear in clusters 1 and 2, which may be because these clusters are 
mainly distributed in the absence of hydrothermal activity or weak 
alteration by hydrothermal fluids, as discussed later. In contrast, clusters 
3 and 4 are mostly dominated by sulfide rock and weakly/moderately 
altered rock, respectively. 

Differences between the eight elemental contents are revealed by 
their median values in each lithotype (Fig. 6a, 6b) and cluster (Fig. 6c, 
6d) by dividing the elements into two groups depending on their content 
magnitude. Sulfide rock and clusters 3 and 4 show a similar pattern such 
that seven elements (except for Mn) are higher than in the other lith-
otypes and clusters. Clusters 3 and 4 can be a target of metal resources 
because of particularly higher base metal contents, especially cluster 3 
by its abundant Zn. They are distinguished by differences in Ba and Mn 
contents: Ba is scarce in cluster 3. The other lithotypes, primary and 
reworked sediments, weakly/moderately altered rock, and pervasively 
altered rock are similar in their low Zn, Pb, Cu, Ag, Sn, and Cd contents 
and are distinguished by differences in Ba and Mn. Pervasively altered 

rock is characterized by the highest Ba and Mn contents. Clusters 1 and 2 
also low contents for the seven elements except for Mn. Considering Mn 
occurrences in the uppermost layer, the presence of Mn hydroxides 
derived from hydrothermal plume (e.g. German et al., 1990, 1991) is 
inferred to be widespread on the seafloor. 

4.3. Metal-content distribution by TBSIM 

Because most features are summarized in PC1, this group was tar-
geted for spatial modeling by TBSIM. Following the principle of geo-
statistics, the PC1 values preferably follow a normal distribution. 
However, PC1 values show a strong positive skewness (Fig. 7a), which 
means that the clr transformation did not adequately remove the effect 
of trace elements with small variance on the correlations between ele-
ments. To obtain a desirable Gaussian distribution of the PC1 values, the 
normal score transformation was applied to the PC1 values to transform 
them into a normal standard distribution with 0 mean and 1.0 variance 
(Fig. 7b). This transformation preserves the ordering and spatial re-
lationships of the data. The simulated results were then linearly back- 
transformed into the original data scale. 

The spatial correlation structure of the transformed data was quan-
tified by semivariograms along two directions: the omnidirectional 
horizontal direction in the XY plane and vertical direction of the Z axis. 
Both experimental semivariograms are well fitted to the spherical 
model, as shown by the curves in Fig. 7c. The ranges are defined as 120 
and 90 m along the horizontal and vertical directions, respectively, from 
the spherical model. 

Accuracy of the geostatistical modeling was checked by a cross- 
validation procedure that uses a scatterplot between the true (ordi-
nate) and predicted values (abscissa) at data locations from neighboring 
data (Fig. 7d). Ordinary kriging was adopted for cross-validation to 
check the suitability of the semivariogram models and neighborhood 
search setting using an ellipse or circle. Considering the ranges, the 
search area was set to an ellipse with 120 m along the XY plane and 90 m 
along the Z axis. The correlation between the true and predicted values 
is relatively high (linear correlation coefficient ρ = 0.79), which verifies 
the suitability and feasibility of TBSIM using the models and search 
setting. The scatterplot shows also larger overestimates and 

Fig. 5. Results of k-means cluster analysis for eight correlated elements: (a) biplot of PC1 and PC2 showing cluster features; (b) ratio of sample number classified into 
four clusters and; (c) stacked bar chart depicting occurrence ratio of four lithotypes in each cluster. 
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underestimates of the PC values close to the minimum and maximum, 
respectively (Fig. 7d). This decrease in the accuracy is mainly caused by 
the too sparse distribution of sample data in the deep region as shown in 
Fig. 1e. However, the predicted values are fallen within a certain range 
around the 45◦ line except for particularly distant several data. The 
accuracy of TBSIM was also demonstrated by our previous study (de Sá 
et al., 2020). 

The e-type TBSIM results are shown by PC1 distributions on the 
seafloor and at an E-W cross-section that passes the drill site locations 
(Fig. 8a, 8b). High PC1 values are clearly concentrated on the western 
side of the active vent near drill site I and also in the western side of the 
inferred fault. An E-W vertical cross-section with iso-planes of the PC1 
values reveals that high values greater than PC1 = 4.0 are thickly 
distributed underneath the sulfide mound, suggesting stockwork for-
mation (Fig. 8b). In addition, horizontal/stratiform mineralization 
seems to occur from the mound toward the east until the inferred fault, 
as shown by the elongated zone enclosed by the iso-plane of PC1 = 4.0. 
Highly permeable pumiceous and sedimentary materials are thought to 
be distributed in the mineralized zone where diffusive flows may 
percolate through the pores. 

Low values less than PC1 = 2.0 around drill site VI imply the absence 
of hydrothermal activity in the western side of the fault. By tracing the 
zones with PC1 > 4.0 from 1800 mbsl to the seafloor in the western 
fault, the fault may have acted as a barrier for hydrothermal flows from 
the west and transported them along it. 

Considering the stratiform mineralization and effects of hydrother-
mal activity from the western boundary to the inferred fault, this sub-
area was divided into three zones following the iso-plane of PC1 = 4.0 
for PGSIM (Fig. 8c). The top zone (A) is mainly unrelated to hydro-
thermal alteration and composed of primary and reworked sediments. 
The middle zone (B) is a major mineralization zone containing the 
massive sulfide mound, stockwork, and horizontal/stratiform subsea-
floor sulfide layer. The bottom zone (C) mainly consists of pervasively 
altered rock. These results reveal a discontinuous geologic distribution 
induced by the inferred fault and require that the model domain be 
resized to optimize the PGSIM application by considering the fault 

location. The easternmost limit was rearranged to suit the distal edge of 
the polymetallic sulfide body, shortening the E-W length from 700 to 
500 m, while the vertical range remained unaltered. 

4.4. Lithotype modeling by PGSIM 

The lithotype rules and indicator semivariograms of the lithotypes 
and cluster numbers along the omnidirectional horizontal and vertical 
directions were separately produced for zones A, B, and C, as shown in 
Fig. 9 (lithotypes) and Fig. 10 (cluster numbers). The area of each 
rectangle in a lithotype rule is proportional to the frequency of each 
lithotype or cluster number (i.e., number of data points out of the total 
number). In all three zones, the ranges of horizontal and vertical semi-
variograms were approximated as 70 and 15 m, respectively. The 
experimental semivariograms were fitted to an exponential model for 
zone B and a Gaussian covariance model for zones A and C. The fitting 
degree of the horizontal experimental semivariograms to the models was 
worse than that of the vertical experimental semivariograms for the 
lithotype because their rock horizontal distributions were more het-
erogeneous, and the number of drill site locations is particularly limited. 
Reliability of the experimental semivariograms depends on the number 
of sampled data. The model fitting was therefore better for the cluster 
number along both the directions because more data are available. 

The lithotype rules and two sets of conditioning data (except for drill 
site VI) were used for 215 and 363 of the lithotype and cluster number 
simulations, respectively. The results are shown by the seafloor distri-
butions (Fig. 11a, b), perspective view from the southeast (Fig. 11c, d), 
and an E-W cross-section (Fig. 11e, f) of the same location as Fig. 8b. On 
the seafloor, the mineralization-related lithotype, sulfide rock, and high- 
metal-content clusters 3 and 4 are concentrated around the sulfide 
mound similar to the TBSIM result of PC1, whereas the primary and 
reworked sediments and cluster 1 without evidence of hydrothermal 
alteration are predominantly distributed on the eastern side. Fig. 11c 
and d show the distributions of lithotypes and cluster numbers, and 
highlight the concentration of hydrothermal activity and mineralization 
occurrences in zone B. 

Fig. 6. Median contents of eight elements used for PCA in each lithotype (a and b) and cluster (c and d). Clusters 1 and 2 overlap in (c) and (d) except for Mn.  
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Characteristics of the lithotype and cluster number distributions are 
revealed more clearly by the cross-section, which confirms that the 
lithotype model is well fitted to the conceptual geologic model (Fig. 1e) 
and supports the suitability of the zone divisions, lithotype rule, and 
semivariogram models. A remarkable feature includes the geologic 
significance of cluster 4 in mineralized zone B as a halo of high-metal- 
content cluster 3 because it is thinly distributed along the edges of the 
sulfide rock lithotype. The most plausible explanation of this halo is 
hydrothermal alteration along the flow paths. The distribution of cluster 
1 overlaps with lithotypes of unrelated hydrothermal activity, primary 
and reworked sediments, and pervasively altered rock in zones A and C. 
The distribution of cluster 2 in zone C overlaps with weakly/moderately 
altered rock. Although cluster 2 is low in metal contents (Fig. 5a), the 
weakly/moderately altered rock in zone C contains chlorite group 
minerals in drill site III and hydrothermal clay with a pyrrhotite + (iso) 
cubanite vein in drill site IV. Such mineral characteristics suggest the 
formation of hydrothermal flow pathways in zone C along which 
mineralization scarcely occurred. 

4.5. Improvement of lithotype model for interpretation of the 
hydrothermal flow system 

By integrating the lithotypes in each cluster number (Fig. 5c) and 
PGSIM results of lithotype and cluster number, relationships of lithotype 
with cluster number and features of polymetallic contents in each cluster 
detected from the PCA analysis (Fig. 6) can be identified, as summarized 
in Table 1. Cluster 1 covers two lithotypes, primary and reworked sed-
iments and pervasively altered rock, and is poor in polymetallic contents 
except for Mn. In the top zone, the presence of Mn is related to discharge 
of the hydrothermal fluids from chimneys (i.e., hydrothermal plumes) 
and commonly found in turbiditic and hemipelagic sediments as forms 
of Fe-Mn hydroxide and oxide (e.g. German et al., 1990, 1991). 
Seawater provides an oxidization environment for Mn precipitation 
above sulfide zones as well as in areas distal from the vents. Sulfide rock 
was assigned to cluster 3, which is mostly contained in zone B and a 
highly mineralized zone. This zone also includes cluster 4 whose 
composition is similar to that of cluster 3 with slightly higher Ba and Mn 
contents owing to the occurrence of sulfate minerals. Weakly/moder-
ately altered rock lithotypes are separated into two clusters: cluster 4 
with mineralized features rich in polymetallic elements and cluster 2, 

Fig. 7. Results of geostatistical analysis. Histograms of (a) original PC1 values and (b) normal score transformed values. (c) Experimental and modeled semi-
variograms (represented by diamonds and curves, respectively) of the transformed dataset along two directions: the omnidirectional horizontal direction (red curve) 
and vertical direction (purple curve). (d) Cross-plot between the true and predicted PC1 normal scores by ordinary kriging, showing the kriging calculating accuracy 
and suitability of the semivariogram models and neighborhood data searching setting. A spherical model was used for the fitting. 
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which is poor in these features and forms strings in zone C. Simplified 
lithologic properties are merged into the onboard visual core de-
scriptions listed in Table 1. 

Using the relationship between lithotype and cluster number 
(Table 1), the PGSIM results of cluster numbers (Fig. 11) were trans-
formed into lithotype: cluster 1 to primary and reworked sediments in 
the shallow part and pervasively altered rock in the deep part; cluster 2 
to weakly/moderately altered rock; cluster 3 to sulfide rock; and cluster 
4 to weakly/moderately altered rock. The purpose of this transformation 
was to improve the PGSIM geologic model on the basis of subjective 
drilling core observations. 

Fig. 12 is a resulting revised geologic model along an E-W cross- 
section with the same locations of Fig. 8b, 11e, and f. This improved 

model can provide a more detailed delineation of the distributions of 
sulfide rock and stockwork underneath drill site I, which is located near 
the sulfide mound with a chimney, as well as small discontinuous dis-
tributions of sulfide rock between drill sites II and V in the zone of hy-
drothermally altered rock. The distribution of sulfide rock in Fig. 12 
suggests two fluid flows with high probability (red arrows). The ascent 
flows toward the sulfide mound and the lateral flows from the stockwork 
zone toward its adjacent permeable layers. The former flow may be 
predominant because mineralization is concentrated on the seafloor and 
in the shallow subseafloor. The latter flow induces large heat loss 
without forming a chimney or mound and causes horizontal/stratiform 
alteration and mineralization (i.e. replacement alteration/mineraliza-
tion) (Doyle and Allen, 2003; Tornos et al., 2015). Such subseafloor 

Fig. 8. PC1 value distribution by TBSIM on the seafloor (a), (b) at an E-W vertical cross-section along the line in Fig. 1c, (c) a perspective view of the iso-surface of 
PC1 = 4.0 of the three zones divided for lithotype simulations by PGSIM, and geologic columns. The TBSIM result is an e-type model by averaging 100 realizations. 
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replacement mineralization is consistent with the different Pb and S 
isotope signatures between the mound sulfide and subseafloor sulfide 
body (Totsuka et al., 2019; Nozaki et al., 2021a). 

In addition to the numerous studies regarding kuroko deposits in 
Japan, analogue VMS deposits on land are also helpful to understand the 
transport and precipitation mechanism of polymetallic metals in hy-
drothermal systems in the Okinawa Trough. In shallow portions of active 
hydrothermal systems in the seafloor, such as in the Hakurei Site, the 
main factors that control the mineral assemblage stability are temper-
ature, pH, and pressure (Robb, 2004). Similar to the kuroko deposits, the 
main minerals in this study area are sphalerite, galena, barite, and pyrite 

(Ishikawa et al., 2004; Ishibashi et al., 2015; Nozaki et al., 2016), which 
are considered to have precipitated by mixing of cold seawater with hot 
hydrothermal fluids in a temperature range from approximately 200 to 
300 ◦C (Herzig and Hannington, 1995). Cu-rich minerals, typically 
chalcopyrite, precipitated in the inner and lower parts of the stockwork 
near the chimney in a higher temperature range from 280 to 380 ◦C 
(Sato, 1974; Date et al., 1983; Eldridge et al., 1983; Ohmoto and 
Takahashi, 1983; Ohmoto, 1996). Portions of sphalerite and galena 
grains can be dissolved and remobilized to the shallower part during 
zone-refining when hot hydrothermal fluid returns into the system (e.g. 
Ohmoto, 1996). The appearance of a kuroko-like zoning pattern in the 

Fig. 9. Lithotype rule diagrams and indicator variograms along the omnidirectional horizontal and vertical directions of the four lithotypes in the three zones shown 
in Fig. 7c. The dashed and solid lines denote the experimental and modeled semivariograms, respectively. 
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geologic model can be explained by these processes. The zoning reflects 
the dissemination of Cu and Fe in the stockwork and predominant dis-
tribution of Ca, Ba, Zn, Pb, and Fe in the exterior, as reported by Ohmoto 
(1996). Furthermore, similar features of the channel sediments with Na 
anomalies and sericite, illite, gypsum, and anhydrite fillings in the fluid 
paths (Singer and Kouda, 1983) were observed in the samples from 
weakly and moderately altered rocks in the study area. 

Because the hydrothermal system is open to seawater recharge and 
hydrothermal fluid flow discharge (Pirajno, 2009), the inferred fault 
likely acts as a pathway of ambient cold seawater and causes mixing 
with hydrothermal fluids. This mixing may have induced the 

precipitation of polymetallic sulfides in association with the horizontal/ 
stratiform subseafloor sulfide layer in zone B by means of a pH increase 
and temperature decrease of the fluids. 

5. Conclusions 

This study clarifies the geologic structure and 3D distribution of 
metal contents in the Hakurei Site, Izena Hole, in the middle Okinawa 
Trough, southwest Japan and interprets the mineralization process 
using two data-characterization methods, PCA and k-means clustering, 
and two geostatistical simulation methods, TBSIM and PGSIM. The most 

Fig. 10. Lithotype rule diagrams and indicator variograms along the omnidirectional horizontal and vertical directions of the four cluster numbers in the three zones 
shown in Fig. 7c. The dashed and solid lines denote the experimental and modeled semivariograms, respectively. 
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substantial hurdle was the sparse drill site data at only six locations 
along a given line. PCA was useful to select essential elements from the 
ICP-QMS data for characterizing the hydrothermal-originated mineral-
ization. Eight elements, Zn, Pb, Cu, Ag, Ba, Cd, Mn, and Sn, were chosen 
for clustering. Most of the data are summarized by PC1 and the distri-
bution of PC1 values was determined by TBSIM. High PC1 values sug-
gests a stratiform mineralization zone and divides the study area into 
three zones depending on the similarity of PC1 values and lithotypes. 
PGSIM simulations of the lithotype and cluster number distributions 
were implemented independently with the zones. PGSIM honors cate-
gory proportions and ordering relations through lithotype rule and 
transition matrix of category data. 

The combination of data-characterization methods using PCA, k- 

means clustering, and geostatistical simulations proposed by this study 
can contribute to (i) construction of proper geologic and mineralization 
models and (ii) identification of hydrothermal fluid-flow systems and 
the accumulation mechanism of base metals in seafloor hydrothermal 
fields. Our next step is to incorporate geophysical logging data and more 
detailed XRD mineralogy data as supplementary information to improve 
the metal-content model and construct a fluid flow model by considering 
the PGSIM results. 
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