MARINE CONTROLLED-SOURCE ELECTROMAGNETIC SOUNDING ON SUBMARINE MASSIVE SULPHIDES USING AUTONOMOUS UNDERWATER VEHICLE

Tada-nori Goto*, Naoto Imamura, Junichi Takekawa and Hitoshi Mikada Kyoto University, Japan

Summary of today's talk

- Proposal of AUV-CSEM: A new survey technology for shallow sub-seafloor structure imaging such as seafloor massive sulphide (SMS)
- Numerical studies show us that AUV-CSEM is feasible even with a shorter source-dipole length, positioning (navigation) errors and so on.

- Proceeding the real AUV-CSEM survey, we applied ROV-based DC resistivity survey for testing instruments.
- The obtained surface resistivity /IP distribution corresponds to the camera image/coring results.
 - Related cruises:KRo8-10, KRo9-16, KR11-02

2

AUV=Autonomous Underwater Vehicle

Source configuration (y-direction):
4m dipole length, 1A amp. with freq of 10Hz.

- Jy source Ey, Hx, Hz receiver
- Resistivity values comes from Von-Herzen at al.(1996)

Summar	v of Nume	erical Simu	lation

					IIIIdiiiUi
Model	Receiver Direction	Maximum Normalized Amp. with the Offset	Positioning Noise	Moving Noise (stack)	Tilt Noise
Thickness 20m Depth 20m	Ey	8% at 200m	1.8%	90% (11%)	0.4%
	Hx	22% at 100m	1.8%	61% (7.7%)	0.4%
	Hz	10% at 200m	4.3%	750% (94%)	0.4%
Thickness 40m Depth 20m	Ey	14% at 200m	1.8%	90% (11%)	0.4%
	Hx	29% at 110m	1.8%	74% (9.3%)	0.4%
	Hz	14% at 200m	4.3%	750% (94%)	0.4%
Thickness 20m Depth 0m	Ey	19% at 60m	4.0%	3.4% (0.4%)	0.4%
	Hx	52% at 70m	2.0%	34% (4.3%)	0.4%
	Hz	10% at 160m	2.9%	187% (23%)	0.4%

Jy source-Ey, Hx receiver can be used.

App. Res. and IP mapping

Summary

- AUV-CSEM survey is feasible.
- Source-AUV and receiver-OBEM will be a realistic combination for the survey.
- The developed instruments test is successful at a SMS.
- The in-situ test shows low resistivity/high IP features of SMS.
- The Japanese AUV "Urashima" is ready to go. The AUV experiment with OBEM is conducted around the real SMS in Dec., 2011.

